Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Jan;8(1):e1002431.
doi: 10.1371/journal.pgen.1002431. Epub 2012 Jan 19.

Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression

Affiliations

Unraveling the regulatory mechanisms underlying tissue-dependent genetic variation of gene expression

Jingyuan Fu et al. PLoS Genet. 2012 Jan.

Abstract

It is known that genetic variants can affect gene expression, but it is not yet completely clear through what mechanisms genetic variation mediate this expression. We therefore compared the cis-effect of single nucleotide polymorphisms (SNPs) on gene expression between blood samples from 1,240 human subjects and four primary non-blood tissues (liver, subcutaneous, and visceral adipose tissue and skeletal muscle) from 85 subjects. We characterized four different mechanisms for 2,072 probes that show tissue-dependent genetic regulation between blood and non-blood tissues: on average 33.2% only showed cis-regulation in non-blood tissues; 14.5% of the eQTL probes were regulated by different, independent SNPs depending on the tissue of investigation. 47.9% showed a different effect size although they were regulated by the same SNPs. Surprisingly, we observed that 4.4% were regulated by the same SNP but with opposite allelic direction. We show here that SNPs that are located in transcriptional regulatory elements are enriched for tissue-dependent regulation, including SNPs at 3' and 5' untranslated regions (P = 1.84×10(-5) and 4.7×10(-4), respectively) and SNPs that are synonymous-coding (P = 9.9×10(-4)). SNPs that are associated with complex traits more often exert a tissue-dependent effect on gene expression (P = 2.6×10(-10)). Our study yields new insights into the genetic basis of tissue-dependent expression and suggests that complex trait associated genetic variants have even more complex regulatory effects than previously anticipated.

PubMed Disclaimer

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Functional Properties of eSNPs with tissue-dependent effect and concordant effect.
The bar plot shows the frequency of the eSNP per function property. The eSNPs were annotated using the web-based tool of SNP Annotation and Proxy Search (SNAP; http://www.broadinstitute.org/mpg/snap/), based on the HapMap CEU population panel (release 22) and genome build 36.3. The asterisks indicate the significance of Fisher's exact test by comparing the eSNPs with concordant effect and with discordant effect, as given in the legend.
Figure 2
Figure 2. cis-regulation of gene expression between tissues.
The associated probe-SNP pairs were classified to be concordant or discordant between tissues. The small pie plot shows the proportion of probes that have only concordant association (red part) or at least one discordant association (blue part). The probes with discordant association were under tissue-dependent regulation and we characterized four different mechanisms: specific regulation, alternative regulation, different effect size and opposite effect sizes. Their proportions are shown in the large blue pie plot. The concordant cis-regulation and the four different mechanisms are illustrated by the correlation between SNP genotypes (AA, AG and GG) and gene expression levels in two tissues: brown dots represent the expression of a gene in tissue 1 and purple dots the expression of a gene in tissue 2.
Figure 3
Figure 3. Case examples for tissue-dependent cis-regulation.
(A) The liver-specific regulation of the SORT1 gene. (B) The alternative regulation of the TMEM176A gene in blood and liver. (C) The cis-regulation for the MGMT gene had different effect sizes in blood and SAT. (D) The cis-regulation for the DDT gene show opposite allelic direction between blood and liver. For each gene, the left panel shows the cis-eQTL association profile in the corresponding tissue (liver or SAT, in blue) vs the association profile in blood (red). The x-axis is the genome position based on genome build 36.3 (in Mb). The y-axis at the left is the association strength in terms of Z-score. The Z-score in blood has been weighted by the square root of the sample size, corresponding to the compared tissue. The dashed green line indicates the significance level of association at FDR 0.05. We use the absolute Z-scores to show the association in (A–C), but use the Z-scores in (D) for a better illustration of allelic direction. We assigned the association Z-scores in blood a negative value. If the allelic direction in SAT is the same as that in blood, the Z-score in SAT is negative too; otherwise, the Z-score in SAT is positive. The black line shows the recombination rate at this locus based on the HapMap II CEU panel and the scale is indicated on the right-hand y-axis. The green line with arrow at the bottom shows the genome position of the gene and the arrow indicates the transcription direction. The right panel shows the correlation of the Z-scores between two tissues. The r-value indicates the correlation coefficient of the Pearson correlation.
Figure 4
Figure 4. Molecular models of tissue-dependent cis-regulation.
The observed tissue-dependent cis-regulations can be explained by two molecular models: (A) the tissue-dependent use of the same causal variants, or (B) the use of tissue-dependent causal variants. The ovals indicate the two regulatory factors (e.g., transcription factors) that play regulatory roles in different tissues (brown in tissue 1 and purple in tissue 2). These factors can recognize the same or different cis-elements (the yellow region). The genetic variants are shown as SNPs with A/G alleles. The SNPs in red are causal variants and the SNPs in blue are tag SNPs. The red line between them indicates the linkage disequilibrium. The arrows indicate the effect of regulatory factors, here the up arrows represent expression stimulators and the down arrows expression suppressors. The size of the arrows indicates the size of the differences between the expression of A and G alleles, i.e., the cis-eQTL effect size.

Similar articles

Cited by

References

    1. Cookson W, Liang L, Abecasis G, Moffatt M, Lathrop M. Mapping complex disease traits with global gene expression. Nat Rev Genet. 2009;10:184–194. - PMC - PubMed
    1. Nicolae DL, Gamazon E, Zhang W, Duan S, Dolan ME, et al. Trait-associated SNPs are more likely to be eQTLs: annotation to enhance discovery from GWAS. PLoS Genet. 2010;6:e1000888. doi: 10.1371/journal.pgen.1000888. - DOI - PMC - PubMed
    1. Monks SA, Leonardson A, Zhu H, Cundiff P, Pietrusiak P, et al. Genetic inheritance of gene expression in human cell lines. Am J Hum Genet. 2004;75:1094–1105. - PMC - PubMed
    1. Cheung VG, Conlin LK, Weber TM, Arcaro M, Jen K, et al. Natural variation in human gene expression assessed in lymphoblastoid cells. Nat Genet. 2003;33:422–425. - PubMed
    1. Bullaughey K, Chavarria CI, Coop G, Gilad Y. Expression quantitative trait loci detected in cell lines are often present in primary tissues. Hum Mol Genet. 2009;18:4296–4303. - PMC - PubMed

Publication types

MeSH terms