Skip to main page content
U.S. flag

An official website of the United States government

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Feb;122(2):545-52.
doi: 10.1172/JCI60433. Epub 2012 Jan 24.

Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans

Affiliations

Brown adipose tissue oxidative metabolism contributes to energy expenditure during acute cold exposure in humans

Véronique Ouellet et al. J Clin Invest. 2012 Feb.

Abstract

Brown adipose tissue (BAT) is vital for proper thermogenesis during cold exposure in rodents, but until recently its presence in adult humans and its contribution to human metabolism were thought to be minimal or insignificant. Recent studies using PET with 18F-fluorodeoxyglucose (18FDG) have shown the presence of BAT in adult humans. However, whether BAT contributes to cold-induced nonshivering thermogenesis in humans has not been proven. Using PET with 11C-acetate, 18FDG, and 18F-fluoro-thiaheptadecanoic acid (18FTHA), a fatty acid tracer, we have quantified BAT oxidative metabolism and glucose and nonesterified fatty acid (NEFA) turnover in 6 healthy men under controlled cold exposure conditions. All subjects displayed substantial NEFA and glucose uptake upon cold exposure. Furthermore, we demonstrated cold-induced activation of oxidative metabolism in BAT, but not in adjoining skeletal muscles and subcutaneous adipose tissue. This activation was associated with an increase in total energy expenditure. We found an inverse relationship between BAT activity and shivering. We also observed an increase in BAT radio density upon cold exposure, indicating reduced BAT triglyceride content. In sum, our study provides evidence that BAT acts as a nonshivering thermogenesis effector in humans.

PubMed Disclaimer

Figures

Figure 1
Figure 1. Study protocols.
(A) Measurement of plasma glucose turnover and BAT 11C-acetate and 18FDG uptake during acute cold exposure. (B) Measurement of plasma NEFA turnover and BAT 18FTHA during acute cold exposure and BAT 11C-acetate uptake at room temperature.
Figure 2
Figure 2. Tissue glucose uptake.
(A) Transversal PET (left panel), CT (middle panel), and fusion scan (right panel) views of the cervicothoracic junction in one of the participants. Red circles denote supraclavicular BAT. (B) Fractional (Ki) and (C) net (Km) glucose uptake in cervicothoracic tissues. (D) Coronal view (postero-anterior projection) of whole-body 18FDG uptake during cold exposure. *P < 0.05 versus BAT, ANOVA with Dunnett’s post-hoc test.
Figure 3
Figure 3. Tissue NEFA uptake.
(A) Transversal PET (left panel), CT (middle panel), and fusion scan (right panel) views of the cervicothoracic junction in one of the participants. Red circles show supraclavicular BAT. (B) Fractional (Ki) and (C) net (Km) NEFA uptake in cervicothoracic tissues. (D) Coronal view (postero-anterior projection) of whole-body 18FTHA uptake during cold exposure. *P < 0.05 versus BAT, ANOVA with Dunnett’s post-hoc test.
Figure 4
Figure 4. 11C-acetate kinetics.
11C time-radioactivity curves over the first 500 seconds of acquisition after 11C-acetate injection at room temperature (red) and during cold exposure (blue) in (A) blood in the aorta, (B) supraclavicular BAT, (C) subcutaneous adipose tissue, (D) longus colli, (E) trapezius, and (F) deltoid. 11C time-radioactivity curves were different during cold exposure from those at room temperature in BAT (2-way ANOVA, P = 0.05; interaction with time, P < 0.001) and in longi colli (2-way ANOVA, P = 0.02; interaction with time, P < 0.001), but not in other organs. Monoexponential decay slope from peak tissue 11C activity (11C-acetate k) in (G) supraclavicular BAT and (H) longus colli. (I) BAT radio density by CT.

Comment in

  • Yes, even human brown fat is on fire!
    Cannon B, Nedergaard J. Cannon B, et al. J Clin Invest. 2012 Feb;122(2):486-9. doi: 10.1172/JCI60941. Epub 2012 Jan 24. J Clin Invest. 2012. PMID: 22269320 Free PMC article.

Similar articles

Cited by

References

    1. Cannon B, Nedergaard J. Brown adipose tissue: function and physiological significance. Physiol Rev. 2004;84(1):277–359. doi: 10.1152/physrev.00015.2003. - DOI - PubMed
    1. Richard D, Picard F. Brown fat biology and thermogenesis. Front Biosci. 2011;16:1233–1260. doi: 10.2741/3786. - DOI - PubMed
    1. Sell H, Deshaies Y, Richard D. The brown adipocyte: update on its metabolic role. Int J Biochem Cell Biol. 2004;36(11):2098–2104. doi: 10.1016/j.biocel.2004.04.003. - DOI - PubMed
    1. Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. Eur J Nucl Med Mol Imaging. 2002;29(10):1393–1398. doi: 10.1007/s00259-002-0902-6. - DOI - PubMed
    1. Cypess AM, et al. Identification and importance of brown adipose tissue in adult humans. N Engl J Med. 2009;360(15):1509–1517. doi: 10.1056/NEJMoa0810780. - DOI - PMC - PubMed

Publication types