Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2012 Aug;40(2):416-23.
doi: 10.1183/09031936.00091011. Epub 2012 Jan 20.

Pioglitazone attenuates endotoxin-induced acute lung injury by reducing neutrophil recruitment

Affiliations
Free article

Pioglitazone attenuates endotoxin-induced acute lung injury by reducing neutrophil recruitment

Jochen Grommes et al. Eur Respir J. 2012 Aug.
Free article

Erratum in

Abstract

Treatment of acute lung injury (ALI) remains an unsolved problem in intensive care medicine. Activation and recruitment of neutrophils are regarded as key mechanisms in the progression of ALI. As pioglitazone holds potent pleiotropic anti-inflammatory effects, we explored its effects during ALI. C57Bl/6 mice were exposed to aerosolised lipopolysaccharides (LPSs) (500 μg·mL(-1)) and their alveolar, interstitial and intravascular neutrophils were assessed 4 h later. Lung permeability changes were evaluated by fluorescein isothiocyanate-dextran clearance and protein content in the bronchoalveolar lavage fluid. In vitro, human isolated neutrophils were pretreated with piolitazone (10 μM, for 1 or 3 h) and then activated with N-formyl-L-methionyl-L-leucyl-L-phenylalanine. Neutrophil activation, adhesion, release and formation of reactive oxygen species (ROS) and phagocytosis were measured thereafter. Pioglitazone treatment before or after induction of ALI significantly diminished alveolar (reduction by 73% and 67%, respectively) and interstitial neutrophil influx (reduction by 55% and 63%, respectively) and reduced lung permeability changes (reduction by 64% and 58%, respectively) indicating a protective role of pioglitazone treatment in ALI. Moreover, pioglitazone significantly reduced degranulation and adhesion of neutrophils without affecting ROS formation and release or bacterial phagocytosis. Pioglitazone reduces recruitment and activation of neutrophils thereby preventing LPS-induced ALI. Our results imply a potential role for pioglitazone treatment in the management of ALI.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources