Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Nov 16:(57):3188.
doi: 10.3791/3188.

Hyperinsulinemic-euglycemic clamps in conscious, unrestrained mice

Affiliations

Hyperinsulinemic-euglycemic clamps in conscious, unrestrained mice

Julio E Ayala et al. J Vis Exp. .

Abstract

Type 2 diabetes is characterized by a defect in insulin action. The hyperinsulinemic-euglycemic clamp, or insulin clamp, is widely considered the "gold standard" method for assessing insulin action in vivo. During an insulin clamp, hyperinsulinemia is achieved by a constant insulin infusion. Euglycemia is maintained via a concomitant glucose infusion at a variable rate. This variable glucose infusion rate (GIR) is determined by measuring blood glucose at brief intervals throughout the experiment and adjusting the GIR accordingly. The GIR is indicative of whole-body insulin action, as mice with enhanced insulin action require a greater GIR. The insulin clamp can incorporate administration of isotopic 2[(14)C]deoxyglucose to assess tissue-specific glucose uptake and [3-(3)H]glucose to assess the ability of insulin to suppress the rate of endogenous glucose appearance (endoRa), a marker of hepatic glucose production, and to stimulate the rate of whole-body glucose disappearance (Rd). The miniaturization of the insulin clamp for use in genetic mouse models of metabolic disease has led to significant advances in diabetes research. Methods for performing insulin clamps vary between laboratories. It is important to note that the manner in which an insulin clamp is performed can significantly affect the results obtained. We have published a comprehensive assessment of different approaches to performing insulin clamps in conscious mice(1) as well as an evaluation of the metabolic response of four commonly used inbred mouse strains using various clamp techniques(2). Here we present a protocol for performing insulin clamps on conscious, unrestrained mice developed by the Vanderbilt Mouse Metabolic Phenotyping Center (MMPC; URL: www.mc.vanderbilt.edu/mmpc). This includes a description of the method for implanting catheters used during the insulin clamp. The protocol employed by the Vanderbilt MMPC utilizes a unique two-catheter system(3). One catheter is inserted into the jugular vein for infusions. A second catheter is inserted into the carotid artery, which allows for blood sampling without the need to restrain or handle the mouse. This technique provides a significant advantage to the most common method for obtaining blood samples during insulin clamps which is to sample from the severed tip of the tail. Unlike this latter method, sampling from an arterial catheter is not stressful to the mouse(1). We also describe methods for using isotopic tracer infusions to assess tissue-specific insulin action. We also provide guidelines for the appropriate presentation of results obtained from insulin clamps.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Ayala JE, Bracy DP, McGuinness OP, Wasserman DH. Considerations in the design of hyperinsulinemic-euglycemic clamps in the conscious mouse. Diabetes. 2006;55:390–397. - PubMed
    1. Berglund ED, Li CY, Poffenberger G, Ayala JE, Fueger PT, Willis SE, Jewell MM, Powers AC, Wasserman DH. Glucose metabolism in vivo in four commonly used inbred mouse strains. Diabetes. 2008;57:1790–1799. - PMC - PubMed
    1. Niswender KD, Shiota M, Postic C, Cherrington AD, Magnuson MA. Effects of increased glucokinase gene copy number on glucose homeostasis and hepatic glucose metabolism. J. Biol. Chem. 1997;272:22570–22575. - PubMed
    1. Kim HJ, Higashimori T, Park SY, Choi H, Dong J, Kim YJ, Noh HL, Cho YR, Cline G, Kim YB, Kim JK. Differential effects of interleukin-6 and -10 on skeletal muscle and liver insulin action in vivo. Diabetes. 2004;53:1060–1067. - PubMed
    1. Kim JK, Fillmore JJ, Chen Y, Yu C, Moore IK, Pypaert M, Lutz EP, Kako Y, Velez-Carrasco W, Goldberg IJ, Breslow JL, Shulman GI. Tissue-specific overexpression of lipoprotein lipase causes tissue-specific insulin resistance. Proc. Natl. Acad. Sci. U. S. A. 2001;98:7522–7527. - PMC - PubMed

Publication types