Clinical implications of novel mutations in epigenetic modifiers in AML
- PMID: 22093580
- DOI: 10.1016/j.hoc.2011.09.013
Clinical implications of novel mutations in epigenetic modifiers in AML
Abstract
The studies highlighted in this article suggest that mutations in TET2 mutations may impart adverse outcome in patients with CN-AML, whereas mutations in DNMT3a may have adverse implications in a broader set of patients with AML. The data with IDH enzyme mutations are less clear, in that individual IDH1 and IDH2 mutations may have different clinical effects and the data so far have not suggested a uniform effect on outcome. Despite the exciting data indicating that mutational testing for these alterations may be clinically useful, several challenges to understanding their clinical relevance remain. First, patients may simultaneously have mutations in multiple genes described in this article (FLT3, NPM1, CEBPa, DNMT3a, IDH1/2, or TET2), and in additional genes not mentioned earlier (Ras,47 PTEN,48 PHF6,49 ASXL1,15 and RUNX145). Furthermore, comprehensive sequencing studies of well-annotated, homogeneously treated patient cohorts are needed to understand the clinical implications of integrated mutational profiling in AML. An additional challenge to using mutational analysis for TET2 and DNMT3a in clinical use is identifying a means for rapid molecular testing of these mutations. This challenge may be met by the use of non–polymerase chain reaction–based methods of target enrichment, such as hybrid capture, followed by next-generation sequencing technologies. Moreover, clinical studies evaluating the biochemical consequences of mutations in some of these genes (eg, production of 2-HG in bodily fluids from patients with IDH-mutant AML or increased hydroxymethylcytosine levels in pretreatment blast DNA in patients with TET2/IDH mutant AML) may also prove to be useful in identifying biomarkers. Alternatively, protein-based technologies such as immunohistochemistry or mass spectrometry may be used in the clinical setting to detect the mutant proteins or loss of expression of specific proteins in patients with mutations. An additional area of importance highlighted by these discoveries is the increasing realization that several of these genes encode enzymes or result in alterations in enzymatic activities, which may represent novel, tractable therapeutic targets for patients with AML. This finding may hopefully lead to the development of novel targeted therapeutics for patients with specific genetic alterations in AML. This development may be occurring now with the advent of DOT1L-targeted therapy for leukemic cells with translocations involving MLL1.50,51 Studies to identify whether the neomorphic enzymatic activity of IDH1/2 mutations may be targetable or if the downstream effects of TET2 mutations can be targeted are ongoing and may lead to the development of rational epigenetic therapies that improve outcomes for patients with AML.
Copyright © 2011 Elsevier Inc. All rights reserved.
Similar articles
-
Mutations in epigenetic modifiers in acute myeloid leukemia and their clinical utility.Expert Rev Hematol. 2016 May;9(5):447-69. doi: 10.1586/17474086.2016.1144469. Epub 2016 Feb 9. Expert Rev Hematol. 2016. PMID: 26789100 Review.
-
Cooperating gene mutations in childhood acute myeloid leukemia with special reference on mutations of ASXL1, TET2, IDH1, IDH2, and DNMT3A.Blood. 2013 Apr 11;121(15):2988-95. doi: 10.1182/blood-2012-06-436782. Epub 2013 Jan 30. Blood. 2013. PMID: 23365461
-
Mutations in epigenetic modifiers in the pathogenesis and therapy of acute myeloid leukemia.Blood. 2013 May 2;121(18):3563-72. doi: 10.1182/blood-2013-01-451781. Blood. 2013. PMID: 23640996 Free PMC article. Review.
-
Molecular alterations of isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) metabolic genes and additional genetic mutations in newly diagnosed acute myeloid leukemia patients.J Hematol Oncol. 2012 Mar 7;5:5. doi: 10.1186/1756-8722-5-5. J Hematol Oncol. 2012. PMID: 22397365 Free PMC article.
-
Additional mutations in IDH1/2-mutated patients with acute myeloid leukemia.Int J Lab Hematol. 2021 Dec;43(6):1483-1490. doi: 10.1111/ijlh.13648. Epub 2021 Jul 16. Int J Lab Hematol. 2021. PMID: 34270876
Cited by
-
JNK1 as a signaling node in VDR-BRAF induction of cell death in AML.J Steroid Biochem Mol Biol. 2018 Mar;177:149-154. doi: 10.1016/j.jsbmb.2017.07.005. Epub 2017 Jul 29. J Steroid Biochem Mol Biol. 2018. PMID: 28765039 Free PMC article.
-
Rescue of TCA Cycle Dysfunction for Cancer Therapy.J Clin Med. 2019 Dec 6;8(12):2161. doi: 10.3390/jcm8122161. J Clin Med. 2019. PMID: 31817761 Free PMC article. Review.
-
O-GlcNAcylation: an important post-translational modification and a potential therapeutic target for cancer therapy.Mol Med. 2022 Sep 14;28(1):115. doi: 10.1186/s10020-022-00544-y. Mol Med. 2022. PMID: 36104770 Free PMC article. Review.
-
Early B-cell factor 3 (EBF3) is a novel tumor suppressor gene with promoter hypermethylation in pediatric acute myeloid leukemia.J Exp Clin Cancer Res. 2015 Jan 22;34(1):4. doi: 10.1186/s13046-014-0118-1. J Exp Clin Cancer Res. 2015. PMID: 25609158 Free PMC article.
-
Is targeted therapy feasible in acute myelogenous leukemia?Curr Hematol Malig Rep. 2014 Jun;9(2):118-27. doi: 10.1007/s11899-014-0198-1. Curr Hematol Malig Rep. 2014. PMID: 24599573 Free PMC article. Review.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Medical
Research Materials
Miscellaneous