Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Sep-Oct;6(5):389-400.
doi: 10.1002/cmmi.454.

Gold nanorods as molecular contrast agents in photoacoustic imaging: the promises and the caveats

Affiliations
Free article
Review

Gold nanorods as molecular contrast agents in photoacoustic imaging: the promises and the caveats

Srirang Manohar et al. Contrast Media Mol Imaging. 2011 Sep-Oct.
Free article

Abstract

Rod-shaped gold nanoparticles exhibit intense and narrow absorption peaks for light in the far-red and near-infrared wavelength regions, owing to the excitation of longitudinal plasmons. Light absorption is followed predominantly by non radiative de-excitation, and the released heat and subsequent temperature rise cause strong photoacoustic (optoacoustic) signals to be produced. This feature combined with the relative inertness of gold, and its favorable surface chemistry, which permits affinity biomolecule coupling, has seen gold nanorods (AuNR) attracting much attention as contrast agents and molecular probes for photoacoustic imaging. In this article we provide an short overview of the current status of the use of AuNR in molecular imaging using photoacoustics. We further examine the state of the art in various chemical, physical and biochemical phenomena that have implications for the future photoacoustic applications of these particles. We cover the route through fine-tuning of AuNR synthetic procedures, toxicity reduction by appropriate coatings, in vitro cellular interactions of AuNRs, attachment of targeting antibodies, in vivo fate of the particles and the effects of certain light interactions with the AuNR.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources