Ultrahigh sensitive optical microangiography reveals depth-resolved microcirculation and its longitudinal response to prolonged ischemic event within skeletal muscles in mice
- PMID: 21895316
- PMCID: PMC3162619
- DOI: 10.1117/1.3606565
Ultrahigh sensitive optical microangiography reveals depth-resolved microcirculation and its longitudinal response to prolonged ischemic event within skeletal muscles in mice
Abstract
The primary pathophysiology of peripheral arterial disease is associated with impaired perfusion to the muscle tissue in the lower extremities. The lack of effective pharmacologic treatments that stimulate vessel collateralization emphasizes the need for an imaging method that can be used to dynamically visualize depth-resolved microcirculation within muscle tissues. Optical microangiography (OMAG) is a recently developed label-free imaging method capable of producing three-dimensional images of dynamic blood perfusion within microcirculatory tissue beds at an imaging depth of up to ∼2 mm, with an unprecedented imaging sensitivity of blood flow at ∼4 μm∕s. In this paper, we demonstrate the utility of OMAG in imaging the detailed blood flow distributions, at a capillary-level resolution, within skeletal muscles of mice. By use of the mouse model of hind-limb ischemia, we show that OMAG can assess the time-dependent changes in muscle perfusion and perfusion restoration along tissue depth. These findings indicate that OMAG can represent a sensitive, consistent technique to effectively study pharmacologic therapies aimed at promoting the growth and development of collateral vessels.
Figures
Similar articles
-
Label-free in vivo optical imaging of functional microcirculations within meninges and cortex in mice.J Neurosci Methods. 2010 Dec 15;194(1):108-15. doi: 10.1016/j.jneumeth.2010.09.021. Epub 2010 Oct 7. J Neurosci Methods. 2010. PMID: 20933005 Free PMC article.
-
Laser Doppler imaging of reactive hyperemia exposes blood flow deficits in a rat model of experimental limb ischemia.J Cardiovasc Pharmacol. 2009 Jun;53(6):446-51. doi: 10.1097/FJC.0b013e3181a6aa62. J Cardiovasc Pharmacol. 2009. PMID: 19433986
-
Does optical microangiography provide accurate imaging of capillary vessels?: validation using multiphoton microscopy.J Biomed Opt. 2014;19(10):106011. doi: 10.1117/1.JBO.19.10.106011. J Biomed Opt. 2014. PMID: 25341071 Free PMC article.
-
Depth-resolved imaging of capillary networks in retina and choroid using ultrahigh sensitive optical microangiography.Opt Lett. 2010 May 1;35(9):1467-9. doi: 10.1364/OL.35.001467. Opt Lett. 2010. PMID: 20436605 Free PMC article.
-
Highly sensitive imaging of renal microcirculation in vivo using ultrahigh sensitive optical microangiography.Biomed Opt Express. 2011 Apr 1;2(5):1059-68. doi: 10.1364/BOE.2.001059. Biomed Opt Express. 2011. PMID: 21559119 Free PMC article.
Cited by
-
Quantifying the vascular response to ischemia with speckle variance optical coherence tomography.Biomed Opt Express. 2014 Nov 3;5(12):4118-30. doi: 10.1364/BOE.5.004118. eCollection 2014 Dec 1. Biomed Opt Express. 2014. PMID: 25574425 Free PMC article.
-
In vivo characterization of cerebrovascular impairment induced by amyloid β peptide overload in glymphatic clearance system using swept-source optical coherence tomography.Neurophotonics. 2023 Jan;10(1):015005. doi: 10.1117/1.NPh.10.1.015005. Epub 2023 Feb 16. Neurophotonics. 2023. PMID: 36817752 Free PMC article.
-
Overexpression of adenosine kinase in cortical astrocytes and focal neocortical epilepsy in mice.J Neurosurg. 2014 Mar;120(3):628-38. doi: 10.3171/2013.10.JNS13918. Epub 2013 Nov 22. J Neurosurg. 2014. PMID: 24266544 Free PMC article.
-
R-Ras-Akt axis induces endothelial lumenogenesis and regulates the patency of regenerating vasculature.Nat Commun. 2017 Nov 23;8(1):1720. doi: 10.1038/s41467-017-01865-x. Nat Commun. 2017. PMID: 29170374 Free PMC article.
-
Hemodynamic and morphological vasculature response to a burn monitored using a combined dual-wavelength laser speckle and optical microangiography imaging system.Biomed Opt Express. 2012 Mar 1;3(3):455-66. doi: 10.1364/BOE.3.000455. Epub 2012 Feb 9. Biomed Opt Express. 2012. PMID: 22435094 Free PMC article.
References
-
- Weitz J. I., Byrne J., Clagett G. P., Farkouh M. E., Porter J. M., Sackett D. L., Strandness D. E., and Taylor L. M., “Diagnosis and treatment of chronic arterial insufficiency of the lower extremities: a critical review,” Circulation 94, 3026–3049 (1996). - PubMed
-
- Cook J. P., “The pathophysiology of peripheral arterial disease: rational targets for drug intervention,” Vasc. Med. 2, 227–230 (1997). - PubMed
-
- Rey S., Lee K., Semenza G. L., Wang C. J., Gupta K., Chen S., McMillan A., Bhise N., Levchenko A., and Semenza G. L., “Synergistic effect of HIF-1alpha gene therapy and HIF-1-activated bone marrow-derived angiogenic cells in a mouse model of limb ischemia,” Proc. Natl. Acad. Sci. U.S.A. 106(48), 20399–20404 (2009).10.1073/pnas.0911921106 - DOI - PMC - PubMed
-
- Emanueli C., Minasi A., Zacheo A., Chao J., Chao L., Salis M. B., Straino S., Tozzi M. G., Smith R., Gaspa L., Bianchini G., Stillo F., Capogrossi M. C., and Madeddu P., “Local delivery of human tissue kallikrein gene accelerates spontaneous angiogenesis in mouse model of hindlimb ischemia,” Circulation 103(1), 125–32 (2001). - PubMed
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources