Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Sep 15;187(6):3003-14.
doi: 10.4049/jimmunol.1004081. Epub 2011 Aug 12.

Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms

Affiliations

Blocking IL-17A promotes the resolution of pulmonary inflammation and fibrosis via TGF-beta1-dependent and -independent mechanisms

Su Mi et al. J Immunol. .

Erratum in

  • J Immunol. 2014 Nov 15;193(10):5345-6

Abstract

Pulmonary fibrosis is the pathologic basis for a variety of incurable human chronic lung diseases. IL-17A, a glycoprotein secreted from IL-17-producing cells, has recently been shown to be a proinflammatory cytokine involved in chronic inflammation and autoimmune disease. In this study, we report that IL-17A increased the synthesis and secretion of collagen and promoted the epithelial-mesenchymal transition in alveolar epithelial cells in a TGF-β1-dependent manner. Using in vivo fibrotic models, we found IL-17A expression to be elevated and IL-17A-associated signaling pathways to be activated in fibrotic lung tissues. Neutralization of IL-17A in vivo promoted the resolution of bleomycin-induced acute inflammation, attenuated pulmonary fibrosis, and increased survival. Additionally, IL-17A antagonism inhibited silica-induced chronic inflammation and pulmonary fibrosis. Targeting IL-17A resulted in a shift of the suppressive immune response in fibrotic lung tissue toward a Th1-type immune response, and it effectively induced autophagy, which promoted the autophagic degradation of collagen and autophagy-associated cell death. Moreover, IL-17A was found to attenuate the starvation-induced autophagy, and autophagy modulators regulated collagen degradation in the alveolar epithelial cells in a TGF-β1-independent manner. Administration of 3-methylamphetamine, an autophagy inhibitor, reversed the therapeutic efficacy of IL-17A antagonism in pulmonary fibrosis. Our studies indicate that IL-17A participates in the development and progression of pulmonary fibrosis in both TGF-β1-dependent and -independent manners and that the components of the IL-17A signaling pathway are potential therapeutic targets for the treatment of fibroproliferative lung diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources