Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Aug 11:8:398.
doi: 10.1186/1743-422X-8-398.

Phenotypic characterization of patient dengue virus isolates in BALB/c mice differentiates dengue fever and dengue hemorrhagic fever from dengue shock syndrome

Affiliations

Phenotypic characterization of patient dengue virus isolates in BALB/c mice differentiates dengue fever and dengue hemorrhagic fever from dengue shock syndrome

Anne Tuiskunen et al. Virol J. .

Abstract

Background: Dengue virus (DENV) infection is the most common arthropod-borne viral disease in man and there are approximately 100 million infections annually. Despite the global burden of DENV infections many important questions regarding DENV pathogenesis remain unaddressed due to the lack of appropriate animal models of infection and disease. A major problem is the fact that no non-human species naturally develop disease similar to human dengue fever (DF) or dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). Apart from other risk factors for severe dengue such as host genetics and secondary infection with a heterologous DENV, virus virulence is a risk factor that is not well characterized.

Results: Three clinical DENV-1 isolates from Cambodian patients experiencing the various forms of dengue disease (DF, DHF, and DSS) were inoculated in BALB/c mice at three different concentrations. The DENV-1 isolates had different organ and cell tropism and replication kinetics. The DENV-1 isolate from a DSS patient infected the largest number of mice and was primarily neurotropic. In contrast, the DENV-1 isolates from milder clinical dengue cases infected predominantly lungs and liver, and to a lesser extent brain. In addition, infection with the DENV isolate derived from a DSS patient persisted for more than two weeks in a majority of mice compared to the other DENV-1 isolates that peaked during the first week.

Conclusions: These results confirm the in vitro findings of the same DENV-1 isolates, that showed that the isolate derived from a DSS patient can be distinguished based on phenotypic characteristics that differ from the isolates derived from a DF and DHF case 1. We observed in this study that the DSS virus isolate persist longer in vivo with extensive neuroinvasion in contrast to the other DENV-1 isolates originating in milder human cases. Genomic characterization of the three clinical isolates identified six amino acid substitutions unique for the DSS isolates that were located both in structural genes (M and E) and in non-structural genes (NS1, NS3, and NS5). The characterization of these clinically distinct DENV-1 isolates highlight that DENVs within the same genotype may have different in vivo phenotypes.

Highlights: • Clinical DENV-1 isolates have different organ tropism in BALB/c mice.• The isolate from a DSS patient is primarily neurotropic compared to the other isolates.• The DENV-1 isolates have different in vivo replication kinetics.• The isolate from a DSS patient persists longer compared to the other isolates.• These phenotypic differences confirm our earlier in vitro findings with the same DENV-1 isolates. Thus, DENVs within the same serotype and genotype may differ enough to affect clinical conditions in vivo.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Estimated risk of infection depending on virus concentration, day p.i. and virus isolate.
Figure 2
Figure 2
Persistence of infection shown as the number of mice infected out of the total mice inoculated, independent of inoculated virus concentration. Nine mice per DENV isolate and time-point in total were inoculated with the corresponding DENV isolates; DF, DHF, and DSS, respectively.
Figure 3
Figure 3
Box plots showing median IL-10 (solid line) by DENV-1 isolates independent of inoculated virus concentration and days p.i. The line in the middle of each box represents the median; the boxes consists of 1st and 3rd quartile, whiskers are 1.5*(3rd quartile-1st quartile). Outliers are marked with an open circle. The DF-inoculated mice had higher levels of IL-10 compared to the DHF- and DSS-inoculated mice (p = 0.007), with a peak at day 3 p.i (p = 0.009).
Figure 4
Figure 4
Box plots showing median MCP-1 (solid line) by DENV-1 isolates independent of inoculated virus concentration and days p.i. The line in the middle of each box represents the median; the boxes consists of 1st and 3rd quartile, whiskers are 1.5*(3rd quartile-1st quartile). Outliers are marked with an open circle. The DF-inoculated mice had the highest serum levels of secreted MCP-1 and showed the biggest difference compared to the DSS-inoculated mice (p < 0.0001), followed by DHF-inoculated mice (p = 0.011). MCP-1 levels peaked at day 3 p.i. and whereupon it decreased (p = < 0.001).

Similar articles

Cited by

References

    1. Tuiskunen A, Monteil V, Plumet S, Boubis L, Wahlstrom M, Duong V, Buchy P, Lundkvist A, Tolou H, Leparc-Goffart I. Phenotypic and genotypic characterization of dengue virus isolates differentiates dengue fever and dengue hemorrhagic fever from dengue shock syndrome. Arch Virol. 2011. in press . - PubMed
    1. Rice CM. et al.Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science. 1985;229(4715):726–33. doi: 10.1126/science.4023707. - DOI - PubMed
    1. Chambers TJ. et al.Flavivirus genome organization, expression, and replication. Annu Rev Microbiol. 1990;44:649–88. doi: 10.1146/annurev.mi.44.100190.003245. - DOI - PubMed
    1. Halstead SB. Pathogenesis of dengue: challenges to molecular biology. Science. 1988;239(4839):476–81. doi: 10.1126/science.3277268. - DOI - PubMed
    1. WHO. Dengue: guidelines for diagnosis, treatment, prevention and control -- New edition. World Health Organization; 2009. - PubMed