Temperature sensitive synthesis of transfer RNAs in vivo in Saccharomyces cerevisiae
- PMID: 2182323
- PMCID: PMC551802
- DOI: 10.1002/j.1460-2075.1990.tb08233.x
Temperature sensitive synthesis of transfer RNAs in vivo in Saccharomyces cerevisiae
Abstract
Dictyostelium discoideum tRNA genes can be expressed efficiently in vivo in yeast, and transcription products are processed to mature tRNAs. However, primary transcripts of a variant tRNA(Val)(UAC) gene are processing deficient under standard growth conditions (30 degrees C), due to a slightly altered 5' flanking region. A stable extended amino acid acceptor stem, which seems to be required to compensate a G5-G68 mismatch, cannot form. This mismatch destabilizes secondary and probably tertiary structures to such an extent that recognition of processing enzyme(s) under normal conditions (30 degrees C) is impaired. Growing yeast cells at reduced temperature (22 degrees C) can phenotypically complement the processing defect. This observation provides a new concept for the temperature dependent expression of protein coding genes which carry a nonsense codon. Translation of corresponding messages can be controlled by products of a temperature sensitive su-tRNA gene. We successfully tested this concept with two amber suppressors derived from a tRNA(Glu)(UUC) gene from D. discoideum. One of the variant tRNA genes codes for a product with a destabilized amino acid acceptor stem. Primary transcripts of this particular su-tRNA(Glu)(CUA) gene are processed only at reduced growth temperatures and consequently function as temperature sensitive suppressors only under these conditions.
Similar articles
-
RNA polymerase III catalysed transcription can be regulated in Saccharomyces cerevisiae by the bacterial tetracycline repressor-operator system.EMBO J. 1992 Apr;11(4):1487-92. doi: 10.1002/j.1460-2075.1992.tb05193.x. EMBO J. 1992. PMID: 1563352 Free PMC article.
-
A family of non-allelic tRNA(ValGUU) genes from the cellular slime mold Dictyostelium discoideum.Gene. 1988 Dec 20;73(2):373-84. doi: 10.1016/0378-1119(88)90502-1. Gene. 1988. PMID: 3072263
-
Influence of different 5'-flanking sequences of tRNA genes on their in vivo transcription efficiencies in Saccharomyces cerevisiae.Eur J Biochem. 1987 Dec 30;170(1-2):217-24. doi: 10.1111/j.1432-1033.1987.tb13689.x. Eur J Biochem. 1987. PMID: 3319616
-
Transfer RNA post-transcriptional processing, turnover, and subcellular dynamics in the yeast Saccharomyces cerevisiae.Genetics. 2013 May;194(1):43-67. doi: 10.1534/genetics.112.147470. Genetics. 2013. PMID: 23633143 Free PMC article. Review.
-
Structure and transcription of eukaryotic tRNA genes.CRC Crit Rev Biochem. 1985;19(2):107-44. doi: 10.3109/10409238509082541. CRC Crit Rev Biochem. 1985. PMID: 3905254 Review.
Cited by
-
Harnessing the Algal Chloroplast for Heterologous Protein Production.Microorganisms. 2022 Mar 30;10(4):743. doi: 10.3390/microorganisms10040743. Microorganisms. 2022. PMID: 35456794 Free PMC article. Review.
-
RNA polymerase III catalysed transcription can be regulated in Saccharomyces cerevisiae by the bacterial tetracycline repressor-operator system.EMBO J. 1992 Apr;11(4):1487-92. doi: 10.1002/j.1460-2075.1992.tb05193.x. EMBO J. 1992. PMID: 1563352 Free PMC article.
-
CITRIC: cold-inducible translational readthrough in the chloroplast of Chlamydomonas reinhardtii using a novel temperature-sensitive transfer RNA.Microb Cell Fact. 2018 Nov 24;17(1):186. doi: 10.1186/s12934-018-1033-5. Microb Cell Fact. 2018. PMID: 30474564 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources