Cell-enclosing gelatin-based microcapsule production for tissue engineering using a microfluidic flow-focusing system
- PMID: 21522492
- PMCID: PMC3082339
- DOI: 10.1063/1.3516657
Cell-enclosing gelatin-based microcapsule production for tissue engineering using a microfluidic flow-focusing system
Abstract
Gelatin-based microcapsule production using a microfluidic system and the feasibility of the resultant microcapsules for constructing spherical tissues surrounded by heterogeneous cells were studied. The first cell-encapsulation and subsequent cell-enclosing microparticle encapsulation were achieved using a microfluidic flow-focusing droplet production system. A hollow-core structure of about 150 μm in diameter was developed by incubating the resultant microparticles at 37 °C, which induced thermal melting of the enclosed unmodified gelatin microparticles. Mammalian cells filled the hollow-cores after 4 days of incubation. A cell layer on the cell-enclosing microcapsules was developed by simply suspending the microcapsules in medium containing adherent fibroblast cells. This method may prove useful for the generation of gelatin microcapsules using a microfluidic system for formation of artificial tissue constructs.
Figures
Similar articles
-
Production of cell-enclosing hollow-core agarose microcapsules via jetting in water-immiscible liquid paraffin and formation of embryoid body-like spherical tissues from mouse ES cells enclosed within these microcapsules.Biotechnol Bioeng. 2008 Jan 1;99(1):235-43. doi: 10.1002/bit.21624. Biotechnol Bioeng. 2008. PMID: 17705234
-
Calcium alginate microcapsules with spherical liquid cores templated by gelatin microparticles for mass production of multicellular spheroids.Acta Biomater. 2010 Aug;6(8):3132-7. doi: 10.1016/j.actbio.2010.02.003. Epub 2010 Feb 8. Acta Biomater. 2010. PMID: 20144915
-
Competing two enzymatic reactions realizing one-step preparation of cell-enclosing duplex microcapsules.Biotechnol Prog. 2013 Nov-Dec;29(6):1528-34. doi: 10.1002/btpr.1800. Epub 2013 Sep 12. Biotechnol Prog. 2013. PMID: 23955874
-
Generation of core-shell microcapsules with three-dimensional focusing device for efficient formation of cell spheroid.Lab Chip. 2011 Jan 21;11(2):246-52. doi: 10.1039/c0lc00036a. Epub 2010 Oct 21. Lab Chip. 2011. PMID: 20967338
-
Cell encapsulation in core-shell microcapsules through coaxial electrospinning system and horseradish peroxidase-catalyzed crosslinking.Biomed Phys Eng Express. 2020 Jan 13;6(1):015022. doi: 10.1088/2057-1976/ab6035. Biomed Phys Eng Express. 2020. PMID: 33438610
Cited by
-
Multicellular tumor spheroid formation in duplex microcapsules for analysis of chemosensitivity.Cancer Sci. 2012 Mar;103(3):549-54. doi: 10.1111/j.1349-7006.2011.02187.x. Epub 2012 Jan 13. Cancer Sci. 2012. PMID: 22168771 Free PMC article.
-
Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering.Chem Rev. 2022 Nov 23;122(22):16839-16909. doi: 10.1021/acs.chemrev.1c00798. Epub 2022 Sep 15. Chem Rev. 2022. PMID: 36108106 Free PMC article. Review.
-
Cytoprotection of Human Progenitor and Stem Cells through Encapsulation in Alginate Templated, Dual Crosslinked Silk and Silk-Gelatin Composite Hydrogel Microbeads.Adv Healthc Mater. 2022 Sep;11(17):e2200293. doi: 10.1002/adhm.202200293. Epub 2022 Jun 22. Adv Healthc Mater. 2022. PMID: 35686928 Free PMC article.
-
Can microfluidics address biomanufacturing challenges in drug/gene/cell therapies?Regen Biomater. 2016 Jun;3(2):87-98. doi: 10.1093/rb/rbw009. Epub 2016 Mar 8. Regen Biomater. 2016. PMID: 27047674 Free PMC article. Review.
-
Preface to Special Topic: Biological microfluidics in tissue engineering and regenerative medicine.Biomicrofluidics. 2011 Mar 30;5(1):13301. doi: 10.1063/1.3571478. Biomicrofluidics. 2011. PMID: 21522490 Free PMC article.
References
-
- Goosen M. F. A., King G. A., McKnight C. A., and Marcotte N., J. Membr. Sci. JMESDO 41, 323 (1989).10.1016/S0376-7388(00)82412-6 - DOI
LinkOut - more resources
Full Text Sources