Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Jun 3;409(2):136-45.
doi: 10.1016/j.jmb.2011.03.023. Epub 2011 Apr 2.

Neddylation-induced conformational control regulates cullin RING ligase activity in vivo

Affiliations

Neddylation-induced conformational control regulates cullin RING ligase activity in vivo

Boon Kim Boh et al. J Mol Biol. .

Abstract

Cullin RING ligases (CRLs) constitute the largest family of ubiquitin ligases with diverse cellular functions. Conjugation of the ubiquitin-like molecule Nedd8 to a conserved lysine residue on the cullin scaffold is essential for the activity of CRLs. Using structural studies and in vitro assays, it has been demonstrated that neddylation stimulates CRL activity through conformational rearrangement of the cullin C-terminal winged-helix B domain and Rbx1 RING subdomain from a closed architecture to an open and dynamic structure, thus promoting ubiquitin transfer onto the substrate. Here, we tested whether the proposed mechanism operates in vivo in intact cells and applies to other CRL family members. To inhibit cellular neddylation, we used a cell line with tetracycline-inducible expression of a dominant-negative form of the Nedd8 E2 enzyme or treatment of cells with the Nedd8 E1 inhibitor MLN4924. Using these cellular systems, we show that different mutants of Cul2 and Cul3 and of Rbx1 that confer increased Rbx1 flexibility mimic neddylation and rescue CRL activity in intact cells. Our findings indicate that in vivo neddylation functions by inducing conformational changes in the C-terminal domain of Cul2 and Cul3 that free the RING domain of Rbx1 and bridge the gap for ubiquitin transfer onto the substrate.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources