Single nucleotide polymorphism microarray analysis of genetic alterations in cancer
- PMID: 21431646
- DOI: 10.1007/978-1-61779-074-4_17
Single nucleotide polymorphism microarray analysis of genetic alterations in cancer
Abstract
The identification of structural genetic alterations, including DNA amplifications, deletions, and loss of heterozygosity (LOH), using single nucleotide polymorphism (SNP) microarrays has provided important insights into the pathogenesis of a number of hematologic malignancies. Currently available SNP arrays comprise over a million SNP and copy number oligonucleotide probes that interrogate the genome at sub-kilobase resolution. The accurate detection of DNA copy number abnormalities and LOH is critically dependent on the use of high-quality DNA, the use of matched reference samples wherever possible, optimal normalization of raw microarray data, and computational algorithms to detect copy number alterations sensitively and robustly. This chapter provides methods and guidelines for preparing samples, processing and analyzing data, and validation of novel lesions. Specific examples are provided for Affymetrix SNP arrays in acute lymphoblastic leukemia.
Similar articles
-
Combined array-comparative genomic hybridization and single-nucleotide polymorphism-loss of heterozygosity analysis reveals complex genetic alterations in cervical cancer.BMC Genomics. 2007 Feb 20;8:53. doi: 10.1186/1471-2164-8-53. BMC Genomics. 2007. PMID: 17311676 Free PMC article.
-
High-resolution analysis of DNA copy number using oligonucleotide microarrays.Genome Res. 2004 Feb;14(2):287-95. doi: 10.1101/gr.2012304. Genome Res. 2004. PMID: 14762065 Free PMC article.
-
An integrated analysis tool for analyzing hybridization intensities and genotypes using new-generation population-optimized human arrays.BMC Genomics. 2016 Mar 31;17:266. doi: 10.1186/s12864-016-2478-8. BMC Genomics. 2016. PMID: 27029637 Free PMC article.
-
SNP array analysis in hematologic malignancies: avoiding false discoveries.Blood. 2010 May 27;115(21):4157-61. doi: 10.1182/blood-2009-11-203182. Epub 2010 Mar 19. Blood. 2010. PMID: 20304806 Free PMC article. Review.
-
Single-nucleotide polymorphism array karyotyping in clinical practice: where, when, and how?Semin Oncol. 2012 Feb;39(1):13-25. doi: 10.1053/j.seminoncol.2011.11.010. Semin Oncol. 2012. PMID: 22289488 Review.
Cited by
-
Genomic characterization of childhood acute lymphoblastic leukemia.Semin Hematol. 2013 Oct;50(4):314-24. doi: 10.1053/j.seminhematol.2013.10.001. Epub 2013 Oct 4. Semin Hematol. 2013. PMID: 24246699 Free PMC article. Review.
-
Advances in the Biology of Acute Lymphoblastic Leukemia-From Genomics to the Clinic.J Adolesc Young Adult Oncol. 2011 Jun;1(2):77-86. doi: 10.1089/jayao.2011.0012. J Adolesc Young Adult Oncol. 2011. PMID: 23610732 Free PMC article.
-
Genomic profiling of B-progenitor acute lymphoblastic leukemia.Best Pract Res Clin Haematol. 2011 Dec;24(4):489-503. doi: 10.1016/j.beha.2011.09.004. Epub 2011 Nov 6. Best Pract Res Clin Haematol. 2011. PMID: 22127311 Free PMC article. Review.
-
Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas.Nat Genet. 2013 Jun;45(6):602-12. doi: 10.1038/ng.2611. Epub 2013 Apr 14. Nat Genet. 2013. PMID: 23583981 Free PMC article.
-
Down regulation of RhoC by microRNA-138 results in de-activation of FAK, Src and Erk1/2 signaling pathway in head and neck squamous cell carcinoma.Oral Oncol. 2014 May;50(5):448-56. doi: 10.1016/j.oraloncology.2014.01.014. Epub 2014 Feb 22. Oral Oncol. 2014. PMID: 24565984 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources