Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19
- PMID: 21422278
- PMCID: PMC3078419
- DOI: 10.1073/pnas.1014920108
Dendritic cell chemotaxis in 3D under defined chemokine gradients reveals differential response to ligands CCL21 and CCL19
Abstract
Dendritic cell (DC) homing to the lymphatics and positioning within the lymph node is important for adaptive immunity, and is regulated by gradients of CCL19 and CCL21, ligands for CCR7. Despite the importance of DC chemotaxis, it is not well understood how DCs interpret gradients of these chemokines in a complex 3D microenvironment. Here, we use a microfluidic device that allows rapid establishment of stable gradients in 3D matrices to show that DC chemotaxis in 3D can respond to CCR7 ligand gradients as small as 0.4%, which helps explain how DCs sense lymphatic vessels in an environment where broadcast distance for chemokine diffusion is hindered by convective flows into the vessel. Interestingly, DCs displayed similar sensitivities to both chemokines at small gradients (≤ 60 nM/mm), but migrated more efficiently towards higher gradients of CCL21, which unlike CCL19 binds strongly to matrix proteoglycans and signals without the need for internalization. Furthermore, cells preferentially migrated towards CCL21 when exposed to equal and opposite gradients of CCL21 and CCL19 simultaneously, even when matrix-binding of CCL21 was prevented. Although these ligands have similar binding affinity to CCR7, our results demonstrate that, in a 3D environment, CCL21 is a more potent directional cue for DC migration than CCL19. These findings provide new quantitative insight into DC chemotaxis in a physiological 3D environment and suggest how CCL19 and CCL21 may signal differently to fine-tune DC homing and positioning within the lymphatic system. These results also have broad relevance to other systems of cell chemotaxis, which remain poorly understood in the 3D context.
Conflict of interest statement
The authors declare no conflict of interest.
Figures
Similar articles
-
CCL19 with CCL21-tail displays enhanced glycosaminoglycan binding with retained chemotactic potency in dendritic cells.J Leukoc Biol. 2018 Aug;104(2):401-411. doi: 10.1002/JLB.2VMA0118-008R. Epub 2018 May 16. J Leukoc Biol. 2018. PMID: 29768676
-
Fluorescently Tagged CCL19 and CCL21 to Monitor CCR7 and ACKR4 Functions.Int J Mol Sci. 2018 Dec 4;19(12):3876. doi: 10.3390/ijms19123876. Int J Mol Sci. 2018. PMID: 30518137 Free PMC article.
-
Autocrine CCL19 blocks dendritic cell migration toward weak gradients of CCL21.Cytotherapy. 2016 Sep;18(9):1187-96. doi: 10.1016/j.jcyt.2016.06.010. Epub 2016 Jul 14. Cytotherapy. 2016. PMID: 27424146
-
Common and biased signaling pathways of the chemokine receptor CCR7 elicited by its ligands CCL19 and CCL21 in leukocytes.J Leukoc Biol. 2016 Jun;99(6):869-82. doi: 10.1189/jlb.2MR0815-380R. Epub 2016 Jan 4. J Leukoc Biol. 2016. PMID: 26729814 Review.
-
Biased signaling of G protein-coupled receptors - From a chemokine receptor CCR7 perspective.Gen Comp Endocrinol. 2018 Mar 1;258:4-14. doi: 10.1016/j.ygcen.2017.07.004. Epub 2017 Jul 8. Gen Comp Endocrinol. 2018. PMID: 28694053 Review.
Cited by
-
Cooperative roles of SDF-1α and EGF gradients on tumor cell migration revealed by a robust 3D microfluidic model.PLoS One. 2013 Jul 15;8(7):e68422. doi: 10.1371/journal.pone.0068422. Print 2013. PLoS One. 2013. PMID: 23869217 Free PMC article.
-
Harnessing the cDC1-NK Cross-Talk in the Tumor Microenvironment to Battle Cancer.Front Immunol. 2021 Feb 19;11:631713. doi: 10.3389/fimmu.2020.631713. eCollection 2020. Front Immunol. 2021. PMID: 33679726 Free PMC article. Review.
-
Microfluidics for mammalian cell chemotaxis.Ann Biomed Eng. 2012 Jun;40(6):1316-27. doi: 10.1007/s10439-011-0489-9. Epub 2011 Dec 22. Ann Biomed Eng. 2012. PMID: 22189490 Free PMC article. Review.
-
Cell and tissue engineering in lymph nodes for cancer immunotherapy.Adv Drug Deliv Rev. 2020;161-162:42-62. doi: 10.1016/j.addr.2020.07.023. Epub 2020 Aug 1. Adv Drug Deliv Rev. 2020. PMID: 32750376 Free PMC article.
-
Cell Migration Research Based on Organ-on-Chip-Related Approaches.Micromachines (Basel). 2017 Oct 31;8(11):324. doi: 10.3390/mi8110324. Micromachines (Basel). 2017. PMID: 30400514 Free PMC article. Review.
References
-
- Randolph GJ, Angeli V, Swartz MA. Dendritic-cell trafficking to lymph nodes through lymphatic vessels. Nat Rev Immunol. 2005;5:617–628. - PubMed
-
- Campbell JJ, et al. Chemokines and the arrest of lymphocytes rolling under flow conditions. Science. 1998;279:381–384. - PubMed
-
- Forster R, Davalos-Misslitz AC, Rot A. CCR7 and its ligands: balancing immunity and tolerance. Nat Rev Immunol. 2008;8:362–371. - PubMed
-
- Sullivan SK, McGrath DA, Grigoriadis D, Bacon KB. Pharmacological and signaling analysis of human chemokine receptor CCR-7 stably expressed in HEK-293 cells: high-affinity binding of recombinant ligands MIP-3beta and SLC stimulates multiple signaling cascades. Biochem Biophys Res Commun. 1999;263:685–690. - PubMed
-
- Ott TR, et al. The N-terminal domain of CCL21 reconstitutes high affinity binding, G protein activation, and chemotactic activity, to the C-terminal domain of CCL19. Biochem Biophys Res Commun. 2006;348:1089–1093. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources