Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2011 Oct;55(4):762-9.
doi: 10.1016/j.jhep.2010.12.042. Epub 2011 Feb 18.

The hepatitis B e antigen (HBeAg) targets and suppresses activation of the toll-like receptor signaling pathway

Affiliations

The hepatitis B e antigen (HBeAg) targets and suppresses activation of the toll-like receptor signaling pathway

Tali Lang et al. J Hepatol. 2011 Oct.

Abstract

Background & aims: Viruses target innate immune pathways to evade host antiviral responses. Recent studies demonstrate a relationship between hepatitis B disease states and the host's innate immune response, although the mechanism of immunomodulation is unknown. In humans, the innate immune system recognizes pathogens via pattern recognition receptors such as the Toll-like receptors (TLR), initiating anti-inflammatory responses. TLR expression and pro-inflammatory cytokine production is reduced in hepatitis B e antigen (HBeAg)-positive patients following TLR stimulation. The aim of this study was to investigate interactions between TLR signaling pathways and the mature HBeAg protein localized in the cytosol.

Methods: The ability of HBeAg to inhibit TLR signaling and association with TLR adapters was evaluated by immunoprecipitation, immunostaining, and reporter studies.

Results: Our findings show that HBeAg co-localizes with Toll/IL-1 receptor (TIR)-containing proteins TRAM, Mal, and TLR2 at the sub-cellular level, which was not observed for Hepatitis B core antigen. Co-immunoprecipitation analysis demonstrated HBeAg interacted with TIR proteins Mal and TRAM, while a mutated HBeAg ablated interaction between Mal and MyD88. Importantly, HBeAg also disrupted homotypic TIR:TIR interaction critical for TLR-mediated signaling. Finally, HBeAg suppressed TIR-mediated activation of the inflammatory transcription factors, NF-κB and Interferon-β promoter activity.

Conclusions: Our study provides the first molecular mechanism describing HBeAg immunomodulation of innate immune signal transduction pathways via interaction and targeting of TLR-mediated signaling pathways. These finding suggest the mechanism as to how HBeAg evades innate immune responses contributing to the pathogenesis of chronic hepatitis B infection and the establishment of viral persistence.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources