Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Oct;51(4):462-7.
doi: 10.1016/j.yjmcc.2011.01.006. Epub 2011 Jan 21.

Taking the heart failure battle inside the cell: small molecule targeting of Gβγ subunits

Affiliations
Review

Taking the heart failure battle inside the cell: small molecule targeting of Gβγ subunits

Fadia A Kamal et al. J Mol Cell Cardiol. 2011 Oct.

Abstract

Heart failure (HF) is devastating disease with poor prognosis. Elevated sympathetic nervous system activity and outflow, leading to pathologic attenuation and desensitization of β-adrenergic receptors (β-ARs) signaling and responsiveness, are salient characteristic of HF progression. These pathologic effects on β-AR signaling and HF progression occur in part due to Gβγ-mediated signaling, including recruitment of receptor desensitizing kinases such as G-protein coupled receptor (GPCR) kinase 2 (GRK2) and phosphoinositide 3-kinase (PI3K), which subsequently phosphorylate agonist occupied GPCRs. Additionally, chronic GPCR signaling signals chronically dissociated Gβγ subunits to interact with multiple effector molecules that activate various signaling cascades involved in HF pathophysiology. Importantly, targeting Gβγ signaling with large peptide inhibitors has proven a promising therapeutic paradigm in the treatment of HF. We recently described an approach to identify small molecule Gβγ inhibitors that selectively block particular Gβγ functions by specifically targeting a Gβγ protein-protein interaction "hot spot." Here we describe their effects on Gβγ downstream signaling pathways, including their role in HF pathophysiology. We suggest a promising therapeutic role for small molecule inhibition of pathologic Gβγ signaling in the treatment of HF. This article is part of a special issue entitled "Key Signaling Molecules in Hypertrophy and Heart Failure."

PubMed Disclaimer

Figures

Figure 1
Figure 1
Therapeutic approaches to inhibit Gβγ signaling pathways in HF.

Similar articles

Cited by

References

    1. Lloyd-Jones D, Adams RJ, Brown TM, Carnethon M, Dai S, De Simone G, et al. Heart disease and stroke statistics--2010 update: a report from the American Heart Association. Circulation. 2010 Feb 23;121(7):e46–e215. - PubMed
    1. Toma M, Starling RC. Inotropic therapy for end-stage heart failure patients. Curr Treat Options Cardiovasc Med. 2010 Oct;12(5):409–19. - PubMed
    1. Parissis JT, Rafouli-Stergiou P, Stasinos V, Psarogiannakopoulos P, Mebazaa A. Inotropes in cardiac patients: update 2011. Curr Opin Crit Care. 2010 Oct;16(5):432–41. - PubMed
    1. Koch WJ, Lefkowitz RJ, Rockman HA. Functional consequences of altering myocardial adrenergic receptor signaling. Annu Rev Physiol. 2000;62:237–60. - PubMed
    1. Casey LM, Pistner AR, Belmonte SL, Migdalovich D, Stolpnik O, Nwakanma FE, et al. Small molecule disruption of G beta gamma signaling inhibits the progression of heart failure. Circ Res. 2010 Aug 20;107(4):532–9. - PMC - PubMed

Publication types

MeSH terms

Substances