Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Oct 19:11:585.
doi: 10.1186/1471-2164-11-585.

Genetic diversity and striatal gene networks: focus on the heterogeneous stock-collaborative cross (HS-CC) mouse

Affiliations

Genetic diversity and striatal gene networks: focus on the heterogeneous stock-collaborative cross (HS-CC) mouse

Ovidiu D Iancu et al. BMC Genomics. .

Abstract

Background: The current study focused on the extent genetic diversity within a species (Mus musculus) affects gene co-expression network structure. To examine this issue, we have created a new mouse resource, a heterogeneous stock (HS) formed from the same eight inbred strains that have been used to create the collaborative cross (CC). The eight inbred strains capture > 90% of the genetic diversity available within the species. For contrast with the HS-CC, a C57BL/6J (B6) × DBA/2J (D2) F2 intercross and the HS4, derived from crossing the B6, D2, BALB/cJ and LP/J strains, were used. Brain (striatum) gene expression data were obtained using the Illumina Mouse WG 6.1 array, and the data sets were interrogated using a weighted gene co-expression network analysis (WGCNA).

Results: Genes reliably detected as expressed were similar in all three data sets as was the variability of expression. As measured by the WGCNA, the modular structure of the transcriptome networks was also preserved both on the basis of module assignment and from the perspective of the topological overlap maps. Details of the HS-CC gene modules are provided; essentially identical results were obtained for the HS4 and F2 modules. Gene ontology annotation of the modules revealed a significant overrepresentation in some modules for neuronal processes, e.g., central nervous system development. Integration with known protein-protein interactions data indicated significant enrichment among co-expressed genes. We also noted significant overlap with markers of central nervous system cell types (neurons, oligodendrocytes and astrocytes). Using the Allen Brain Atlas, we found evidence of spatial co-localization within the striatum for several modules. Finally, for some modules it was possible to detect an enrichment of transcription binding sites. The binding site for Wt1, which is associated with neurodegeneration, was the most significantly overrepresented.

Conclusions: Despite the marked differences in genetic diversity, the transcriptome structure was remarkably similar for the F2, HS4 and HS-CC. These data suggest that it should be possible to integrate network data from simple and complex crosses. A careful examination of the HS-CC transcriptome revealed the expected structure for striatal gene expression. Importantly, we demonstrate the integration of anatomical and network expression data.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Overlap of probe detectability and probe variability across the three data sets. (A) Probes detected in each of the data. A set of 9565 genes were above the detection threshold in all three data sets; 14558 genes were not detected in any of the data sets. (B) Probes with high variability. A number of 5600 genes were in the top 75% in terms of coefficient of variation CV in all three data sets, and these genes were selected for network construction; 1023 were in the bottom 25% in terms of variability in all data sets.
Figure 2
Figure 2
Overlap of F2 and HS-CC module membership. The numbers on the axes denote the number of genes in each module. The number in the box denotes the intersection size. The colour legend is proportional to -log(p) probability of chance overlap of same size or higher.
Figure 3
Figure 3
Overlap of HS4 and HS-CC module membership. Figure details as in Figure 2.
Figure 4
Figure 4
Overlap between modules and central nervous system cell type markers. The numbers on the y axis denote the number of genes that are markers for cell types also present in the network. The number in the box denotes the intersection size. The colour legend is proportional to -log(p) probability of chance overlap of same size or higher.
Figure 5
Figure 5
Spatial specificity of modules. (A) Location of the caudoputamen and nucleus accumbens within the mouse brain. Left, coronal section; right, saggital section. (B-D) The midnight blue, purple and red modules, respectively. The ten genes closest to the module eigengene are selected for each module, and their expression is superimposed. For visual clarity, only the areas with medium-high expression intensity are shown, with the darker red signifying high intensity of the hybridization signal (see Methods).

Similar articles

Cited by

References

    1. Carlson MR, Zhang B, Fang Z, Mischel PS, Horvath S, Nelson SF. Gene connectivity, function, and sequence conservation: predictions from modular yeast co-expression networks. BMC Genomics. 2006;7:40. doi: 10.1186/1471-2164-7-40. - DOI - PMC - PubMed
    1. Fuller TF, Ghazalpour A, Aten JE, Drake TA, Lusis AJ, Horvath S. Weighted gene coexpression network analysis strategies applied to mouse weight. Mamm Genome. 2007;18:463–472. doi: 10.1007/s00335-007-9043-3. - DOI - PMC - PubMed
    1. Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, Geschwind DH. Functional organization of the transcriptome in human brain. Nat Neurosci. 2008;11:1271–1282. doi: 10.1038/nn.2207. - DOI - PMC - PubMed
    1. Bergmann S, Ihmels J, Barkai N. Similarities and differences in genome-wide expression data of six organisms. PLoS Biol. 2004;2:E9. doi: 10.1371/journal.pbio.0020009. - DOI - PMC - PubMed
    1. Liao BY, Zhang J. Evolutionary conservation of expression profiles between human and mouse orthologous genes. Molecular Biology and Evolution. 2006;23:530–540. doi: 10.1093/molbev/msj054. - DOI - PubMed

Publication types

MeSH terms