Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010;85(6):372-82.
doi: 10.1159/000313836. Epub 2010 Jun 16.

CRTH2 and D-type prostanoid receptor antagonists as novel therapeutic agents for inflammatory diseases

Affiliations
Review

CRTH2 and D-type prostanoid receptor antagonists as novel therapeutic agents for inflammatory diseases

Rufina Schuligoi et al. Pharmacology. 2010.

Abstract

Accumulation of type 2 T helper (Th2) lymphocytes and eosinophils is a hallmark of bronchial asthma and other allergic diseases, and it is believed that these cells play a crucial pathogenic role in allergic inflammation. Thus, Th2 cells and eosinophils are currently considered a major therapeutic target in allergic diseases and asthma. However, drugs that selectively target the accumulation and activation of Th2 cells and eosinophils in tissues are unavailable so far. Prostaglandin (PG)D(2) is a key mediator in various inflammatory diseases including allergy and asthma. It is generated by activated mast cells after allergen exposure and subsequently orchestrates the recruitment of inflammatory cells to the tissue. PGD(2) induces the chemotaxis of Th2 cells, basophils and eosinophils, stimulates cytokine release from these cells and prolongs their survival, and might hence indirectly promote IgE production. PGD(2) mediates its biologic functions via 2 distinct G protein-coupled receptors, D-type prostanoid receptor (DP), and the chemoattractant receptor-homologous molecule expressed on Th2 cells (CRTH2). DP and CRTH2 receptors are currently being considered as highly promising therapeutic targets for combating allergic diseases and asthma. Here, we revisit the roles of PGD(2) receptors in the regulation of eosinophil and Th2 cell function and the efforts towards developing candidate compounds for clinical evaluation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources