Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Aug;114(4):1085-96.
doi: 10.1111/j.1471-4159.2010.06833.x. Epub 2010 May 26.

Compound K, a metabolite of ginsenosides, facilitates spontaneous GABA release onto CA3 pyramidal neurons

Affiliations
Free article

Compound K, a metabolite of ginsenosides, facilitates spontaneous GABA release onto CA3 pyramidal neurons

Man-Yeol Bae et al. J Neurochem. 2010 Aug.
Free article

Abstract

Ginsenoside Rb1, a major ingredient of ginseng saponins, can affect various brain functions, including learning and memory. When ingested orally, ginsenoside Rb1 is not found in plasma as well as urine, but its metabolite compound K (ComK) reaches the systemic circulation in animals and human. Nevertheless, the pharmacological actions of ComK are still poorly known. In the present study, we investigated the effect of ComK on GABAergic spontaneous miniature inhibitory post-synaptic currents (mIPSCs) in acutely isolated rat hippocampal CA3 pyramidal neurons using a conventional whole-cell patch-clamp technique. While ComK significantly increased mIPSC frequency in a concentration-dependent manner, it had no effect on the current amplitude, suggesting that ComK acts pre-synaptically to increase the probability of spontaneous GABA release. ComK still increased mIPSC frequency even in a Ca(2+) -free external solution, suggesting that the ComK-induced increase spontaneous GABA release is not related to Ca(2+) influx from the extracellular space. However, the ComK-induced increase mIPSC frequency was significantly decreased after the blockade of either sarcoplasmic/endoplasmic reticulum Ca(2+) -ATPase or Ca(2+) release channels. These results strongly suggest that ComK enhances spontaneous GABA release by increasing intraterminal Ca(2+) concentration via Ca(2+) release from pre-synaptic Ca(2+) stores. The ComK-induced modulation of inhibitory transmission onto CA3 pyramidal neurons could have a broad impact on the excitability of CA3 pyramidal neurons and affect the physiological functions mediated by the hippocampus.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources