Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010:661:123-35.
doi: 10.1007/978-1-60761-500-2_8.

The contribution of TRPC1 and STIM1 to capacitative Ca(2+) entry in pulmonary artery

Affiliations
Review

The contribution of TRPC1 and STIM1 to capacitative Ca(2+) entry in pulmonary artery

Lih Chyuan Ng et al. Adv Exp Med Biol. 2010.

Abstract

Capacitative calcium entry (CCE) through store-operated channels (SOCs) has been shown to contribute to the rise in intracellular calcium concentration ([Ca(2+)](i)) and mediate pulmonary artery smooth muscle contraction. CCE is activated as a result of depletion of intracellular Ca(2+) stores but there is a great deal of controversy surrounding the underlying signal that active CCE and the molecular makeup of SOCs. The discovery of canonical subgroup of transient receptor potential channels (TRPC) and recent identification of stromal-interacting molecule 1 (STIM1) protein have opened a door to the study of the identity of SOCs and the signal that activates these channels. Among all the TRPC channels, TRPC1 is widely studied in many cell types and shown to be part of SOCs components, whereas STIM1 protein is found to act as a Ca(2+) sensor in the intracellular Ca(2+) stores and activates SOCs. However, there is very little evidence for the roles of TRPC1 and STIM1 in the contribution of CCE in pulmonary artery. This chapter outlines the roles of TRPC1 and STIM1 in pulmonary artery smooth muscle cells and discusses our recent findings that TRPC1 and STIM1 are functionally interact with each other to mediate CCE in these cells. We also propose a model for the molecular makeup of SOCs formed by TRPC1 and STIM1 in pulmonary artery.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources