Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Mar;304(2):97-106.
doi: 10.1111/j.1574-6968.2010.01906.x. Epub 2010 Jan 20.

The complexity of the 'simple' two-component system KdpD/KdpE in Escherichia coli

Affiliations
Review

The complexity of the 'simple' two-component system KdpD/KdpE in Escherichia coli

Ralf Heermann et al. FEMS Microbiol Lett. 2010 Mar.

Abstract

The KdpD/KdpE two-component system of Escherichia coli activates the expression of the kdpFABC operon encoding the high-affinity K(+) uptake system KdpFABC in response to K(+) limitation or salt stress. Earlier, it was proposed that the histidine kinase KdpD is a turgor sensor; recent studies suggest that KdpD integrates three chemical stimuli from the cytoplasm. The histidine kinase KdpD contains several structural features and subdomains that are important for stimulus perception, modulation of the kinase to phosphatase ratio, and signaling. The response regulator KdpE receives the phosphoryl group from KdpD and induces kdpFABC transcription. The three-dimensional structure of the receiver domain was resolved, providing insights into the activation mechanism of this transcriptional regulator. Two accessory components, the universal stress protein UspC and the phosphotransferase system component IIA(Ntr), are known to interact with KdpD, allowing the modulation of kdpFABC expression under certain physiological conditions. Here, we will discuss the complexity of a 'simple' two-component system and its interconnectivity with metabolism and the general stress response.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources