Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Sep;49(9):1138-45.

[Swine influenza virus: evolution mechanism and epidemic characterization--a review]

[Article in Chinese]
Affiliations
  • PMID: 20030049
Review

[Swine influenza virus: evolution mechanism and epidemic characterization--a review]

[Article in Chinese]
Xian Qi et al. Wei Sheng Wu Xue Bao. 2009 Sep.

Abstract

Pigs may play an important role in the evolution and ecology of influenza A virus. The tracheal epithelium of pigs contain both SA alpha 2,6 Gal and SA alpha 2,3 Gal receptors and can be infected with swine, human and avian viruses, therefore, pigs have been considered as an intermediate host for the adaptation of avian influenza viruses to humans or as mixing vessels for the generation of genetically reassortant viruses. Evolution patterns among swine influenza viruses including evolution of host adaptation, antigenic drift and genetic reassortment, and the latter is the main one. Unlike human influenza viruses, swine viruses have different epizootiological patterns in different areas of world, which is enzootic and geographic dependence. Currently, three predominant subtypes of influenza virus are prevalent in pig populations worldwide: H1N1, H3N2, and H1N2, and these include classical swine H1N1, avian-like H1N1, human-like H3N2, reassortant H3N2 and various genotype H1N2 viruses. In Europe, North America and China, influenza A viruses circulating in pigs are distinct in the genetic characteristics and genetic sources. Since 1979, three subtypes, avian-like H1N1, reassortant H1N2 and H3N2 viruses, have been co-circulating in European swine. Before 1998, classical H1N1 viruses were the exclusive cause of swine influenza in North America. However, after that, three triple-reassortant H1N2, H3N2 and H1N1 viruses with genes of human, swine and avian virus began to emerge in pigs. Genetically, the pandemic viruses emerging in human, so called influenza A (H1N1) viruses, contain genes from both Europe and North American SIV lineages. SIV is not the same as Europe and the United States in the prevalence and genetic background in China, mainly classical swine H1N1 and human-like H3N2 type virus. However, in recent years, SIV from Europe and North America have been introduced into Chinese pig herds, so more attention should be given on the evolutionary of SIV in China. Worldwide, more than 50 cases of SIV infection in human have been documented since the 1970s, which indicate that SIV is also an important zoonosis, and the potential of SIV as human pandemic virus or genes donator. In view of SIV in the importance of ecology, as well as a potential threat to human public health, it is recommended to start as soon as possible regular surveillance, paying close attention to its prevalence and molecular evolution. At the same time, we should establish the surveillance network of the whole influenza virus (including human and animal influenza virus) in China, ecologically mastering the prevalence and evolution of influenza viruses, which is of great significance for the protection of animal health and the prevention of human pandemic.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources