Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2010 Mar;332(3):886-97.
doi: 10.1124/jpet.109.160879. Epub 2009 Dec 16.

Hepatic mitochondrial DNA depletion after an alcohol binge in mice: probable role of peroxynitrite and modulation by manganese superoxide dismutase

Affiliations

Hepatic mitochondrial DNA depletion after an alcohol binge in mice: probable role of peroxynitrite and modulation by manganese superoxide dismutase

Isabelle Larosche et al. J Pharmacol Exp Ther. 2010 Mar.

Abstract

Alcohol consumption increases reactive oxygen species (ROS) formation, which can damage mitochondrial DNA (mtDNA) and alter mitochondrial function. To test whether manganese superoxide dismutase (MnSOD) modulates acute alcohol-induced mitochondrial alterations, transgenic MnSOD-overexpressing (MnSOD(+++)) mice, heterozygous knockout (MnSOD(+/-)) mice, and wild-type (WT) littermates were sacrificed 2 or 24 h after intragastric ethanol administration (5 g/kg). Alcohol administration further increased MnSOD activity in MnSOD(+++) mice, but further decreased it in MnSOD(+/-) mice. In WT mice, alcohol administration transiently increased mitochondrial ROS formation, decreased mitochondrial glutathione, depleted and damaged mtDNA, and decreased complex I and V activities; alcohol durably increased inducible nitric-oxide synthase (NOS) expression, plasma nitrites/nitrates, and the nitration of tyrosine residues in complex V proteins. These effects were prevented in MnSOD(+++) mice and prolonged in MnSOD(+/-) mice. In alcoholized WT or MnSOD(+/-) mice, mtDNA depletion and the nitration of tyrosine residues in complex I and V proteins were prevented or attenuated by cotreatment with tempol (4-hydroxy-2,2,6,6-tetramethylpiperidine-N-oxyl), a superoxide scavenger; N(omega)-nitro-l-arginine methyl ester and N-[3-(aminomethyl)benzyl]acetamidine (1,400W), two NOS inhibitors; or uric acid, a peroxynitrite scavenger. In conclusion, MnSOD overexpression prevents, and MnSOD deficiency prolongs, mtDNA depletion after an acute alcohol binge in mice. The protective effects of MnSOD, tempol, NOS inhibitors, and uric acid point out a role of the superoxide anion reacting with NO to form mtDNA-damaging peroxynitrite.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

Substances

LinkOut - more resources