Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Nov:11 Suppl 4:65-81.
doi: 10.1111/j.1463-1326.2009.01112.x.

Glucose regulation of islet stress responses and beta-cell failure in type 2 diabetes

Affiliations
Review

Glucose regulation of islet stress responses and beta-cell failure in type 2 diabetes

J C Jonas et al. Diabetes Obes Metab. 2009 Nov.

Abstract

Pancreatic beta-cells exposed to high glucose concentrations display altered gene expression, function, survival and growth that may contribute to the slow deterioration of the functional beta-cell mass in type 2 diabetes. These glucotoxic alterations may result from various types of stress imposed by the hyperglycaemic environment, including oxidative stress, endoplasmic reticulum stress, cytokine-induced apoptosis and hypoxia. The glucose regulation of oxidative stress-response and integrated stress-response genes in cultured rat islets follows an asymmetric V-shaped profile parallel to that of beta-cell apoptosis, with a large increase at low glucose and a moderate increase at high vs. intermediate glucose concentrations. These observations suggest that both types of stress could play a role in the alteration of the functional beta-cell mass under states of prolonged hypoglycaemia and hyperglycaemia. In addition, beta-cell demise under glucotoxic conditions may also result from beta-cell hypoxia and, in vivo, from their exposure to inflammatory cytokines released locally by non-endocrine islet cells. A better understanding of the relative contribution of each type of stress to beta-cell glucotoxicity and of their pathophysiological cause in vivo may lead to new therapeutic strategies to prevent the slow deterioration of the functional beta-cell mass in glucose intolerant and type 2 diabetic patients.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources