Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2009 Oct;37(Pt 5):1061-5.
doi: 10.1042/BST0371061.

GRAF1-dependent endocytosis

Affiliations
Review

GRAF1-dependent endocytosis

Gary J Doherty et al. Biochem Soc Trans. 2009 Oct.

Abstract

The role of endocytosis in controlling a multitude of cell biological events is well established. Molecular and mechanistic characterization of endocytosis has predominantly focused on CME (clathrin-mediated endocytosis), although many other endocytic pathways have been described. It was recently shown that the BAR (Bin/amphiphysin/Rvs) and Rho GAP (GTPase-activating protein) domain-containing protein GRAF1 (GTPase regulator associated with focal adhesion kinase-1) is found on prevalent, pleiomorphic endocytic membranes, and is essential for the major, clathrin-independent endocytic pathway that these membranes mediate. This pathway is characterized by its ability to internalize GPI (glycosylphosphatidylinositol)-anchored proteins, bacterial toxins and large amounts of extracellular fluid. These membrane carriers are highly dynamic and associated with the activity of the small G-protein Cdc42 (cell division cycle 42). In the present paper, we review the role of GRAF1 in this CLIC (clathrin-independent carrier)/GEEC (GPI-anchored protein-enriched early endocytic compartment) endocytic pathway and discuss the current understanding regarding how this multidomain protein functions at the interface between membrane sculpting, small G-protein signalling and endocytosis.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources