Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Dec;11(12):3252-64.
doi: 10.1111/j.1462-2920.2009.02048.x. Epub 2009 Sep 4.

Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders

Affiliations
Free article

Asaia, a versatile acetic acid bacterial symbiont, capable of cross-colonizing insects of phylogenetically distant genera and orders

Elena Crotti et al. Environ Microbiol. 2009 Dec.
Free article

Abstract

Bacterial symbionts of insects have been proposed for blocking transmission of vector-borne pathogens. However, in many vector models the ecology of symbionts and their capability of cross-colonizing different hosts, an important feature in the symbiotic control approach, is poorly known. Here we show that the acetic acid bacterium Asaia, previously found in the malaria mosquito vector Anopheles stephensi, is also present in, and capable of cross-colonizing other sugar-feeding insects of phylogenetically distant genera and orders. PCR, real-time PCR and in situ hybridization experiments showed Asaia in the body of the mosquito Aedes aegypti and the leafhopper Scaphoideus titanus, vectors of human viruses and a grapevine phytoplasma respectively. Cross-colonization patterns of the body of Ae. aegypti, An. stephensi and S. titanus have been documented with Asaia strains isolated from An. stephensi or Ae. aegypti, and labelled with plasmid- or chromosome-encoded fluorescent proteins (Gfp and DsRed respectively). Fluorescence and confocal microscopy showed that Asaia, administered with the sugar meal, efficiently colonized guts, male and female reproductive systems and the salivary glands. The ability in cross-colonizing insects of phylogenetically distant orders indicated that Asaia adopts body invasion mechanisms independent from host-specific biological characteristics. This versatility is an important property for the development of symbiont-based control of different vector-borne diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types