Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Apr 1;144(7):2582-91.

Characterization of the receptor for tumor necrosis factor (TNF) and lymphotoxin (LT) on human T lymphocytes. TNF and LT differ in their receptor binding properties and the induction of MHC class I proteins on a human CD4+ T cell hybridoma

Affiliations
  • PMID: 1969453

Characterization of the receptor for tumor necrosis factor (TNF) and lymphotoxin (LT) on human T lymphocytes. TNF and LT differ in their receptor binding properties and the induction of MHC class I proteins on a human CD4+ T cell hybridoma

J S Andrews et al. J Immunol. .

Erratum in

  • J Immunol 1990 Jul 15;144(12):4906

Abstract

TNF-alpha and lymphotoxin (LT or TNF-beta) are structurally related cytokines that share several proinflammatory and immunomodulatory activities. The shared biologic activities of TNF and LT have been attributed to their binding to a common cell surface receptor(s). We observed that rTNF enhanced the expression of MHC class I proteins on the human T cell hybridoma, II-23.D7, however LT was largely unable to regulate MHC expression. To determine the molecular basis of this disparity between LT and TNF the receptor binding characteristics of rTNF and rLT were investigated by direct and competitive radioligand assays on the II-23.D7 T hybridoma, and for comparison, anti-CD3 activated human T lymphocytes. Specific 125I-rTNF binding to the II-23.D7 line revealed a single class of sites with a Kd = 175 pM and 3000 sites/cell; anti-CD3 activated T cells exhibited specific TNF binding with similar properties. The relationship of receptor occupancy to the induction of MHC class I Ag yielded a hyperbolic curve indicating a complex relationship between rTNF binding and biologic response. LT appeared to function like a partial agonist in that rLT was 10- to 20-fold less effective than rTNF in competitively inhibiting 125I-rTNF binding on the II-23.D7 line. Scatchard type analysis revealed a single class of low affinity binding sites for 125I-rLT. No differences in the competitive binding activity of rTNF and rLT were observed on the anti-CD3-activated T cells. Receptors for rTNF and rLT were immunoprecipitated from the II-23.D7 and activated T cells with anticytokine antibodies after cross-linking of radioiodinated rTNF or rLT to intact cells by using chemical cross-linking reagents. Analysis of the cross-linked adducts by SDS-PAGE and autoradiography indicated a major adduct of 92 kDa for rTNF and 104 kDa for rLT. Enzymatic digestion with neuraminidase or V8 protease revealed a unique structure to these adducts consistent with the cross-linking of a single chain of cytokine to a cell surface glycoprotein. rTNF inhibited the formation of the 104-kDa adduct formed with 125I-rLT on the II-23.D7 line, indicating these two cytokines bind to the same receptor of approximately 80 kDa. These results suggest that the disparate activities of LT and TNF to induce MHC class I proteins on the II-23.D7 cells are, in part, associated with a modified state of a common receptor.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources