Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2010 Mar;130(3):318-25.
doi: 10.1080/00016480903127468.

Cellular and molecular bases of neuroplasticity: brainstem effects after cochlear damage

Affiliations
Review

Cellular and molecular bases of neuroplasticity: brainstem effects after cochlear damage

Pablo Gil-Loyzaga et al. Acta Otolaryngol. 2010 Mar.

Abstract

After a cochlear lesion or auditory nerve damage, afferent connections from auditory ganglia can be highly altered. This results in a clear reduction of auditory input and an alteration of connectivity of terminals on cochlear nuclei neurons. Such a process could stimulate the reorganization of the neural circuits and neuroplasticity. Cochlea removal has been demonstrated to be a good model in which to analyse brainstem neuroplasticity, particularly with regard to the cochlear nuclei. After cochlea removal three main periods of degeneration and regeneration were observed. Early effects, during the first week post lesion, involved acute degeneration with nerve ending oedema and degeneration. During the second and, probably, the third post lesion weeks, degeneration was still present, even though a limited and diffuse expression of GAP-43 started. Around 1 month post lesion, degeneration at the cochlear nuclei progressively disappeared and a relevant GAP-43 expression was found. We conclude that neuroplasticity leads neurons to modify their activity and/or their synaptic tree as a consequence of animal adaptation to learning and memory. For the human being neuroplasticity is involved in language learning and comprehension, particularly the acquisition of a second language. Neuroplasticity is important for therapeutic strategies, such as hearing aids and cochlear implants.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources