Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 Aug;330(2):567-74.
doi: 10.1124/jpet.109.152710. Epub 2009 May 15.

CB1 receptor-independent actions of SR141716 on G-protein signaling: coapplication with the mu-opioid agonist Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol unmasks novel, pertussis toxin-insensitive opioid signaling in mu-opioid receptor-Chinese hamster ovary cells

Affiliations
Comparative Study

CB1 receptor-independent actions of SR141716 on G-protein signaling: coapplication with the mu-opioid agonist Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol unmasks novel, pertussis toxin-insensitive opioid signaling in mu-opioid receptor-Chinese hamster ovary cells

Resat Cinar et al. J Pharmacol Exp Ther. 2009 Aug.

Abstract

The CB(1) cannabinoid receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716) has been shown by many investigators to inhibit basal G-protein activity, i.e., to display inverse agonism at high concentrations. However, it is not clear whether this effect is cannabinoid CB(1) receptor-mediated. Using the ligand-stimulated [(35)S]guanosine 5'-3-O-(thio)triphosphate (GTPgammaS) assay, we have found that 10 microM SR141716 slightly but significantly decreases the basal [(35)S]GTPgammaS binding in membranes of the wild-type and CB(1) receptor knockout mouse cortex, parental Chinese hamster ovary (CHO) cells, and CHO cells stably transfected with micro-opioid receptors, MOR-CHO. Accordingly, we conclude that the inverse agonism of SR141716 is CB(1) receptor-independent. Although the specific MOR agonist Tyr-D-Ala-Gly-(NMe)Phe-Gly-ol (DAMGO) saturably and concentration-dependently stimulated [(35)S]GTPgammaS binding, SR141716 (10 microM) inhibited the basal by 25% and competitively inhibited DAMGO stimulation in the mouse cortex. In MOR-CHO membranes, DAMGO caused a 501 +/- 29% stimulation of the basal activity, which was inhibited to 456 +/- 22% by 10 microM SR141716. The inverse agonism of SR141716 was abolished, and DAMGO alone displayed weak, naloxone-insensitive stimulation, whereas the combination of DAMGO and SR141716 (10 microM each) resulted in a 169 +/- 22% stimulation of the basal activity (that was completely inhibited by the prototypic opioid antagonist naloxone) because of pertussis toxin (PTX) treatment to uncouple MORs from G(i)/G(o) proteins. SR141716 proved to bind directly to MORs with low affinity (IC(50) = 5.7 microM). These results suggest the emergence of novel, PTX-insensitive G-protein signaling that is blocked by naloxone when MORs are activated by the combination of DAMGO and SR141716.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources