Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Sep;219(1):363-7.
doi: 10.1016/j.expneurol.2009.05.002. Epub 2009 May 8.

Absence of striatal newborn neurons with mature phenotype following defined striatal and cortical excitotoxic brain injuries

Affiliations

Absence of striatal newborn neurons with mature phenotype following defined striatal and cortical excitotoxic brain injuries

Tomas Deierborg et al. Exp Neurol. 2009 Sep.

Abstract

Experimental stroke and excitotoxic brain lesion to the striatum increase the proliferation of cells residing within the ventricular wall and cause subsequent migration of newborn neuroblasts into the lesioned brain parenchyma. In this study, we clarify the different events of neurogenesis following striatal or cortical excitotoxic brain lesions in adult rats. Newborn cells were labeled by intraperitoneal injection of bromo-deoxy-uridine (BrdU), or by green fluorescent protein (GFP)-expressing lentiviral vectors injected into the subventricular zone (SVZ). We show that only neural progenitors born the first 5 days in the SVZ reside and expand within this neurogenic niche over time, and that these early labeled cells are more prone to migrate towards the striatum as neuroblasts. However, these neuroblasts could not mature into NeuN+ neurons in the striatum. Furthermore, we found that cortical lesions, close or distant from the SVZ, could not upregulate SVZ cell proliferation nor promote neurogenesis. Our study demonstrates that both the time window for labeling proliferating cells and the site of lesion are crucial when assessing neurogenesis following brain injury.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms