Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2009 Jun;53(6):1008-16.
doi: 10.1161/HYPERTENSIONAHA.109.132258. Epub 2009 Apr 20.

Atorvastatin prevents endothelial dysfunction in mesenteric arteries from spontaneously hypertensive rats: role of cyclooxygenase 2-derived contracting prostanoids

Affiliations
Comparative Study

Atorvastatin prevents endothelial dysfunction in mesenteric arteries from spontaneously hypertensive rats: role of cyclooxygenase 2-derived contracting prostanoids

Agostino Virdis et al. Hypertension. 2009 Jun.

Abstract

We investigated the effect of atorvastatin on cyclooxygenase (COX) contribution to endothelial dysfunction in spontaneously hypertensive rat (SHR) mesenteric resistance arteries. Atorvastatin (10 mg/kg per day, oral gavage) or its vehicle was administered for 2 weeks to male SHR or Wistar-Kyoto rats. Endothelial function of mesenteric arteries was assessed by pressurized myograph. In Wistar-Kyoto rats, relaxation to acetylcholine was inhibited by N(G)-nitro-L-arginine methyl ester and unaffected by SC-560 (COX-1 inhibitor), DuP-697 (COX-2 inhibitor), or ascorbic acid. In SHRs, the response to acetylcholine was attenuated, less sensitive to N(G)-nitro-L-arginine methyl ester, unaffected by SC-560, and enhanced by DuP-697 or SQ-29548 (thromboxane-prostanoid receptor antagonist) to a similar extent. Endothelium-dependent relaxation was normalized by ascorbic acid or apocynin (NADPH oxidase inhibitor), which also restored the inhibition by N(G)-nitro-L-arginine methyl ester. In atorvastatin-treated SHRs, relaxation to acetylcholine was normalized, fully sensitive to N(G)-nitro-L-arginine methyl ester, and not affected by SC-560, DuP-697, SQ 29548, or antioxidants. Dihydroethidium assay showed an increased intravascular superoxide generation in SHRs, which was abrogated by atorvastatin. RT-PCR revealed a COX-2 induction in SHR arteries, which was downregulated by atorvastatin. The release of prostacyclin and 8-isoprostane was higher from SHR than Wistar-Kyoto mesenteric vessels. COX-2 inhibition and apocynin decreased 8-isoprostane without affecting prostacyclin levels. Atorvastatin increased phosphorylated extracellular signal-regulated kinase 1/2, pAkt, peNOS(1177), and inducible NO synthase levels in SHR mesenteric vessels and decreased 8-isoprostane release. In conclusion, COX-2-derived 8-isoprostane contributes to endothelial dysfunction in SHR mesenteric arteries. Atorvastatin restores NO availability by increasing phosphorylated extracellular signal-regulated kinase 1/2, pAkt, peNOS(1177), and inducible NO synthase levels and by abrogating vascular NADPH oxidase-driven superoxide production, which also results in a downregulation of COX-2-dependent 8-isoprostane generation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources