In vivo analysis of the Saccharomyces cerevisiae centromere CDEIII sequence: requirements for mitotic chromosome segregation
- PMID: 1922041
- PMCID: PMC361563
- DOI: 10.1128/mcb.11.10.5212-5221.1991
In vivo analysis of the Saccharomyces cerevisiae centromere CDEIII sequence: requirements for mitotic chromosome segregation
Abstract
In the yeast Saccharomyces cerevisiae, the complete information needed in cis to specify a fully functional mitotic and meiotic centromere is contained within 120 bp arranged in the three conserved centromeric (CEN) DNA elements CDEI, -II, and -III. The 25-bp CDEIII is most important for faithful chromosome segregation. We have constructed single- and double-base substitutions in all highly conserved residues and one nonconserved residue of this element and analyzed the mitotic in vivo function of the mutated CEN DNAs, using an artificial chromosome. The effects of the mutations on chromosome segregation vary between wild-type-like activity (chromosome loss rate of 4.8 x 10(-4)) and a complete loss of CEN function. Data obtained by saturation mutagenesis of the palindromic core sequence suggest asymmetric involvement of the palindromic half-sites in mitotic CEN function. The poor CEN activity of certain single mutations could be improved by introducing an additional single mutation. These second-site suppressors can be found at conserved and nonconserved positions in CDEIII. Our suppression data are discussed in the context of natural CDEIII sequence variations found in the CEN sequences of different yeast chromosomes.
Similar articles
-
In vivo characterization of the Saccharomyces cerevisiae centromere DNA element I, a binding site for the helix-loop-helix protein CPF1.Mol Cell Biol. 1991 Jul;11(7):3545-53. doi: 10.1128/mcb.11.7.3545-3553.1991. Mol Cell Biol. 1991. PMID: 2046668 Free PMC article.
-
Mutational analysis of centromere DNA from chromosome VI of Saccharomyces cerevisiae.Mol Cell Biol. 1988 Jun;8(6):2523-35. doi: 10.1128/mcb.8.6.2523-2535.1988. Mol Cell Biol. 1988. PMID: 3043181 Free PMC article.
-
DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries.BMC Mol Biol. 2006 Mar 16;7:12. doi: 10.1186/1471-2199-7-12. BMC Mol Biol. 2006. PMID: 16542422 Free PMC article.
-
Centromere structure and function in budding and fission yeasts.New Biol. 1990 Jan;2(1):10-9. New Biol. 1990. PMID: 2078550 Review.
-
Yeast centromeres.Yeast. 1987 Sep;3(3):187-200. doi: 10.1002/yea.320030306. Yeast. 1987. PMID: 3332973 Review.
Cited by
-
Insights into kinetochore-DNA interactions from the structure of Cep3Delta.EMBO Rep. 2008 Jan;9(1):56-62. doi: 10.1038/sj.embor.7401139. Epub 2007 Dec 7. EMBO Rep. 2008. PMID: 18064045 Free PMC article.
-
Genome instability in rad54 mutants of Saccharomyces cerevisiae.Nucleic Acids Res. 2003 Feb 1;31(3):1013-23. doi: 10.1093/nar/gkg190. Nucleic Acids Res. 2003. PMID: 12560498 Free PMC article.
-
Two genes required for the binding of an essential Saccharomyces cerevisiae kinetochore complex to DNA.Proc Natl Acad Sci U S A. 1995 Dec 19;92(26):12026-30. doi: 10.1073/pnas.92.26.12026. Proc Natl Acad Sci U S A. 1995. PMID: 8618837 Free PMC article.
-
Budding yeast SKP1 encodes an evolutionarily conserved kinetochore protein required for cell cycle progression.Cell. 1996 Jul 26;86(2):275-85. doi: 10.1016/s0092-8674(00)80099-9. Cell. 1996. PMID: 8706132 Free PMC article.
-
Cohesin Causes Replicative DNA Damage by Trapping DNA Topological Stress.Mol Cell. 2020 May 21;78(4):739-751.e8. doi: 10.1016/j.molcel.2020.03.013. Epub 2020 Apr 6. Mol Cell. 2020. PMID: 32259483 Free PMC article.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources