In vivo analysis of the Saccharomyces cerevisiae centromere CDEIII sequence: requirements for mitotic chromosome segregation
- PMID: 1922041
- PMCID: PMC361563
- DOI: 10.1128/mcb.11.10.5212-5221.1991
In vivo analysis of the Saccharomyces cerevisiae centromere CDEIII sequence: requirements for mitotic chromosome segregation
Abstract
In the yeast Saccharomyces cerevisiae, the complete information needed in cis to specify a fully functional mitotic and meiotic centromere is contained within 120 bp arranged in the three conserved centromeric (CEN) DNA elements CDEI, -II, and -III. The 25-bp CDEIII is most important for faithful chromosome segregation. We have constructed single- and double-base substitutions in all highly conserved residues and one nonconserved residue of this element and analyzed the mitotic in vivo function of the mutated CEN DNAs, using an artificial chromosome. The effects of the mutations on chromosome segregation vary between wild-type-like activity (chromosome loss rate of 4.8 x 10(-4)) and a complete loss of CEN function. Data obtained by saturation mutagenesis of the palindromic core sequence suggest asymmetric involvement of the palindromic half-sites in mitotic CEN function. The poor CEN activity of certain single mutations could be improved by introducing an additional single mutation. These second-site suppressors can be found at conserved and nonconserved positions in CDEIII. Our suppression data are discussed in the context of natural CDEIII sequence variations found in the CEN sequences of different yeast chromosomes.
Similar articles
-
In vivo characterization of the Saccharomyces cerevisiae centromere DNA element I, a binding site for the helix-loop-helix protein CPF1.Mol Cell Biol. 1991 Jul;11(7):3545-53. doi: 10.1128/mcb.11.7.3545-3553.1991. Mol Cell Biol. 1991. PMID: 2046668 Free PMC article.
-
Mutational analysis of centromere DNA from chromosome VI of Saccharomyces cerevisiae.Mol Cell Biol. 1988 Jun;8(6):2523-35. doi: 10.1128/mcb.8.6.2523-2535.1988. Mol Cell Biol. 1988. PMID: 3043181 Free PMC article.
-
DNA deformability changes of single base pair mutants within CDE binding sites in S. Cerevisiae centromere DNA correlate with measured chromosomal loss rates and CDE binding site symmetries.BMC Mol Biol. 2006 Mar 16;7:12. doi: 10.1186/1471-2199-7-12. BMC Mol Biol. 2006. PMID: 16542422 Free PMC article.
-
Centromere structure and function in budding and fission yeasts.New Biol. 1990 Jan;2(1):10-9. New Biol. 1990. PMID: 2078550 Review.
-
Yeast centromeres.Yeast. 1987 Sep;3(3):187-200. doi: 10.1002/yea.320030306. Yeast. 1987. PMID: 3332973 Review.
Cited by
-
The N terminus of the centromere H3-like protein Cse4p performs an essential function distinct from that of the histone fold domain.Mol Cell Biol. 2000 Sep;20(18):7037-48. doi: 10.1128/MCB.20.18.7037-7048.2000. Mol Cell Biol. 2000. PMID: 10958698 Free PMC article.
-
Isolation of CENIX and CENXII from Saccharomyces cerevisiae.Nucleic Acids Res. 1993 Jul 11;21(14):3321. doi: 10.1093/nar/21.14.3321. Nucleic Acids Res. 1993. PMID: 8341607 Free PMC article. No abstract available.
-
Synergistic Control of Kinetochore Protein Levels by Psh1 and Ubr2.PLoS Genet. 2016 Feb 18;12(2):e1005855. doi: 10.1371/journal.pgen.1005855. eCollection 2016 Feb. PLoS Genet. 2016. PMID: 26891228 Free PMC article.
-
CEP3 encodes a centromere protein of Saccharomyces cerevisiae.J Cell Biol. 1995 Mar;128(5):749-60. doi: 10.1083/jcb.128.5.749. J Cell Biol. 1995. PMID: 7876302 Free PMC article.
-
The composition, functions, and regulation of the budding yeast kinetochore.Genetics. 2013 Aug;194(4):817-46. doi: 10.1534/genetics.112.145276. Genetics. 2013. PMID: 23908374 Free PMC article. Review.
References
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources