Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2009 Feb 13:8:27.
doi: 10.1186/1475-2875-8-27.

Micro-geographic risk factors for malarial infection

Affiliations

Micro-geographic risk factors for malarial infection

Ward P Myers et al. Malar J. .

Abstract

Background: Knowledge of geography is integral to the study of insect-borne infectious disease such as malaria. This study was designed to evaluate whether geographic parameters are associated with malarial infection in the East Sepik province of Papua New Guinea (PNG), a remote area where malaria is a major cause of morbidity and mortality.

Methods: A global positioning system (GPS) unit was used at each village to collect elevation, latitude and longitude data. Concurrently, a sketch map of each village was generated and the villages were sub-divided into regions of roughly equal populations. Blood samples were taken from subjects in each region using filter paper collection. The samples were later processed using nested PCR for qualitative determination of malarial infection. The area was mapped using the GPS-information and overlaid with prevalence data. Data tables were examined using traditional chi square statistical techniques. A logistic regression analysis was then used to determine the significance of geographic risk factors including, elevation, distance from administrative centre and village of residence.

Results: Three hundred and thirty-two samples were included (24% of the total estimated population). Ninety-six were positive, yielding a prevalence of 29%. Chi square testing within each village found a non-random distribution of cases across sub-regions (p < 0.05). Multivariate logistic regression techniques suggested malarial infection changed with elevation (OR = 0.64 per 10 m, p < 0.05) and distance from administrative centre (OR = 1.3 per 100 m, p < 0.05).

Conclusion: These results suggest that malarial infection is significantly and independently associated with lower elevation and greater distance from administrative centre in a rural area in PNG. This type of analysis can provide information that may be used to target specific areas in developing countries for malaria prevention and treatment.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Prevalence map for malarial infection in Oum village. Zones within the village are color coded from low (yellow) to high (red) prevalence. Other geographic features: river, dry riverbed, and jungle are colored blue, brown and green respectively. Main footpaths are represented by dotted lines.
Figure 2
Figure 2
Prevalence map for malarial infection in Ambunti village. Zones within the village are color coded from low (yellow) to high (red) prevalence. Other geographic features: river and jungle are colored blue and green respectively. Main footpaths are represented by dotted lines. Grey areas represent zones within the village with very low residential population densities (such as airstrip and religious/commercial districts.).

Similar articles

Cited by

References

    1. Cattani JA, Moir JS, Gibson FD, Ginny M, Paino J, Davidson W, Alpers MP. Small-area variations in the epidemiology of malaria in Madang Province. 1986. P N G Med J. 2005;48:95–101. - PubMed
    1. Thompson R, Begtrup K, Cuamba N, Dgedge M, Mendis C, Gamage-Mendis A, Enosse SM, Barreto J, Sinden RE, Hogh B. The Matola malaria project: a temporal and spatial study of malaria transmission and disease in a suburban area of Maputo, Mozambique. Am J Trop Med Hyg. 1997;57:550–559. - PubMed
    1. World Health Statistics 2006. Geneva, Switzerland: World Health Organization; 2006.
    1. Kottek M, Greiser J, Beck C, Rudolf B, Rubel F. World Map of the Köppen-Geiger climate classification updated. Meteorol Z. 2006;15:259–263. doi: 10.1127/0941-2948/2006/0130. - DOI
    1. Muller I, Bockarie M, Alpers M, Smith T. The epidemiology of malaria in Papua New Guinea. Trends Parasitol. 2003;19:253–259. doi: 10.1016/S1471-4922(03)00091-6. - DOI - PubMed

Publication types

MeSH terms