Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Randomized Controlled Trial
. 2009 Mar;29(3):416-23.
doi: 10.1161/ATVBAHA.108.176362. Epub 2008 Dec 26.

Effect of rimonabant on the high-triglyceride/ low-HDL-cholesterol dyslipidemia, intraabdominal adiposity, and liver fat: the ADAGIO-Lipids trial

Affiliations
Randomized Controlled Trial

Effect of rimonabant on the high-triglyceride/ low-HDL-cholesterol dyslipidemia, intraabdominal adiposity, and liver fat: the ADAGIO-Lipids trial

Jean-Pierre Després et al. Arterioscler Thromb Vasc Biol. 2009 Mar.

Abstract

Background: Rimonabant, the first selective cannabinoid type 1 (CB1) receptor antagonist, improves cardiometabolic risk factors in overweight/obese patients. ADAGIO-Lipids assessed the effect of rimonabant on cardiometabolic risk factors and intraabdominal and liver fat.

Methods and results: 803 abdominally obese patients with atherogenic dyslipidemia (increased triglycerides [TG] or reduced high-density lipoprotein-cholesterol [HDL-C]) were randomized to placebo or rimonabant 20 mg/d for 1 year. HDL-C and TG were coprimary end points. Intraabdominal (visceral) and liver fat were measured by computed tomography in a subgroup of 231 patients. In total, 73% of rimonabant- and 70% of placebo-treated patients completed the study treatment. Rimonabant 20 mg produced significantly greater changes from baseline versus placebo in HDL-C (+7.4%) and TG levels (-18%; P<0.0001), as well as low-density lipoprotein (LDL) and HDL particle sizes, apolipoprotein A1 and B, HDL2, HDL3, C-reactive protein, and adiponectin levels (all P<0.05). Rimonabant decreased abdominal subcutaneous adipose tissue (AT) cross-sectional area by 5.1% compared to placebo (P<0.005), with a greater reduction in visceral AT (-10.1% compared to placebo; P<0.0005), thereby reducing the ratio of visceral/subcutaneous AT (P<0.05). Rimonabant significantly reduced liver fat content (liver/spleen attenuation ratio; P<0.005). Systolic (-3.3 mm Hg) and diastolic (-2.4 mm Hg) blood pressure were significantly reduced with rimonabant versus placebo (P<0.0001). The safety profile of rimonabant was consistent with previous studies; gastrointestinal, nervous system, psychiatric, and general adverse events were more common with rimonabant 20 mg.

Conclusions: In abdominally obese patients with atherogenic dyslipidemia, rimonabant 20 mg significantly improved multiple cardiometabolic risk markers and induced significant reductions in both intraabdominal and liver fat.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

MeSH terms