Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008:474:15-33.
doi: 10.1007/978-1-59745-480-3_2.

Creation of hybrid nanorods from sequences of natural trimeric fibrous proteins using the fibritin trimerization motif

Affiliations
Review

Creation of hybrid nanorods from sequences of natural trimeric fibrous proteins using the fibritin trimerization motif

Katerina Papanikolopoulou et al. Methods Mol Biol. 2008.

Abstract

Stable, artificial fibrous proteins that can be functionalized open new avenues in fields such as bionanomaterials design and fiber engineering. An important source of inspiration for the creation of such proteins are natural fibrous proteins such as collagen, elastin, insect silks, and fibers from phages and viruses. The fibrous parts of this last class of proteins usually adopt trimeric, beta-stranded structural folds and are appended to globular, receptor-binding domains. It has been recently shown that the globular domains are essential for correct folding and trimerization and can be successfully substituted by a very small (27-amino acid) trimerization motif from phage T4 fibritin. The hybrid proteins are correctly folded nanorods that can withstand extreme conditions. When the fibrous part derives from the adenovirus fiber shaft, different tissue-targeting specificities can be engineered into the hybrid proteins, which therefore can be used as gene therapy vectors. The integration of such stable nanorods in devices is also a big challenge in the field of biomechanical design. The fibritin foldon domain is a versatile trimerization motif and can be combined with a variety of fibrous motifs, such as coiled-coil, collagenous, and triple beta-stranded motifs, provided the appropriate linkers are used. The combination of different motifs within the same fibrous molecule to create stable rods with multiple functions can even be envisioned. We provide a comprehensive overview of the experimental procedures used for designing, creating, and characterizing hybrid fibrous nanorods using the fibritin trimerization motif.

PubMed Disclaimer

Similar articles

Cited by

  • Circular RNA vaccines against SARS-CoV-2 and emerging variants.
    Qu L, Yi Z, Shen Y, Lin L, Chen F, Xu Y, Wu Z, Tang H, Zhang X, Tian F, Wang C, Xiao X, Dong X, Guo L, Lu S, Yang C, Tang C, Yang Y, Yu W, Wang J, Zhou Y, Huang Q, Yisimayi A, Liu S, Huang W, Cao Y, Wang Y, Zhou Z, Peng X, Wang J, Xie XS, Wei W. Qu L, et al. Cell. 2022 May 12;185(10):1728-1744.e16. doi: 10.1016/j.cell.2022.03.044. Epub 2022 Apr 1. Cell. 2022. PMID: 35460644 Free PMC article.
  • Vaccination with SARS-CoV-2 spike protein lacking glycan shields elicits enhanced protective responses in animal models.
    Huang HY, Liao HY, Chen X, Wang SW, Cheng CW, Shahed-Al-Mahmud M, Liu YM, Mohapatra A, Chen TH, Lo JM, Wu YM, Ma HH, Chang YH, Tsai HY, Chou YC, Hsueh YP, Tsai CY, Huang PY, Chang SY, Chao TL, Kao HC, Tsai YM, Chen YH, Wu CY, Jan JT, Cheng TR, Lin KI, Ma C, Wong CH. Huang HY, et al. Sci Transl Med. 2022 Apr 6;14(639):eabm0899. doi: 10.1126/scitranslmed.abm0899. Epub 2022 Apr 6. Sci Transl Med. 2022. PMID: 35230146 Free PMC article.

MeSH terms

LinkOut - more resources