Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1991 Jan 25;266(3):1646-51.

Identification of distinct endoglycosidase (endo) activities in Flavobacterium meningosepticum: endo F1, endo F2, and endo F3. Endo F1 and endo H hydrolyze only high mannose and hybrid glycans

Affiliations
  • PMID: 1899092
Free article
Comparative Study

Identification of distinct endoglycosidase (endo) activities in Flavobacterium meningosepticum: endo F1, endo F2, and endo F3. Endo F1 and endo H hydrolyze only high mannose and hybrid glycans

R B Trimble et al. J Biol Chem. .
Free article

Abstract

Flavobacterium meningosepticum endo-beta-acetyl-glucosaminidase F preparations have been resolved by hydrophobic interaction chromatography on TSK-butyl resin into at least three activities designated endo F1, endo F2 and endo F3 each with a unique substrate specificity. The 32-kDa endo F1 protein is the principle component representing in excess of 95% of most earlier and currently available commercial endoglycosidase preparations, the remainder being a mixture of five proteins from 32 to 43 kDa. Substrate specificity studies reveal endo F1 and endo H from Streptomyces plicatus to have nearly identical capacities to hydrolyze high-mannose oligosaccharides with a minimum Man1 alpha 3Man1 alpha 6Man1 beta 4GlcNAc1 beta 4GlcNAc structure. Although endo H will hydrolyze fucose-containing hybrid oligosaccharides at rates approaching comparable high-mannose forms, core-linked fucose reduces the hydrolysis rate of endo F1 by over 50-fold relative to high-mannose structures. Neither homogeneous endo F1 nor endo H hydrolyze complex multi-antennary glycans. The biantennary cleaving activity previously reported for endo F preparations (Tarentino, A. L., Gómez, C. M., and Plummer, T. H., Jr. (1985) Biochemistry 24, 4665-4671) is a characteristic of the contaminating endo F2 activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources