Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008;3(10):e3452.
doi: 10.1371/journal.pone.0003452. Epub 2008 Oct 20.

A ligand peptide motif selected from a cancer patient is a receptor-interacting site within human interleukin-11

Affiliations

A ligand peptide motif selected from a cancer patient is a receptor-interacting site within human interleukin-11

Marina Cardó-Vila et al. PLoS One. 2008.

Abstract

Interleukin-11 (IL-11) is a pleiotropic cytokine approved by the FDA against chemotherapy-induced thrombocytopenia. From a combinatorial selection in a cancer patient, we isolated an IL-11-like peptide mapping to domain I of the IL-11 (sequence CGRRAGGSC). Although this motif has ligand attributes, it is not within the previously characterized interacting sites. Here we design and validate in-tandem binding assays, site-directed mutagenesis and NMR spectroscopy to show (i) the peptide mimics a receptor-binding site within IL-11, (ii) the binding of CGRRAGGSC to the IL-11R alpha is functionally relevant, (iii) Arg4 and Ser8 are the key residues mediating the interaction, and (iv) the IL-11-like motif induces cell proliferation through STAT3 activation. These structural and functional results uncover an as yet unrecognized receptor-binding site in human IL-11. Given that IL-11R alpha has been proposed as a target in human cancer, our results provide clues for the rational design of targeted drugs.

PubMed Disclaimer

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1
Figure 1. Binding of IL-11-like peptides to IL-11Rα.
(A) CGRRAGGSC-phage binding to the individual receptor components of the IL-11 receptor complex: IL-11Rα and gp130. Leptin receptor and BSA served as negative controls for binding. (B) Concentration-dependent binding inhibition of CGRRAGGSC-phage to IL-11Rα by the cognate synthetic peptide. Bars represent mean±standard error of the mean (SEM).
Figure 2
Figure 2. Structural basis of the interaction between CGRRAGGSC and IL-11Rα.
(A) Effect of the CGRRAGGSC peptide concentration upon biding to IL-11Rα. Amide region of 1D-1H-NMR spectra of increasing molar concentrations of the peptide CGRRAGGSC binding to IL-11Rα (6 µM) is shown (blue). CGRRAGGSC peptide alone (400 µM) and the spectrum of IL-11Rα alone are also shown (in red and black, respectively). The appearance of arginine side-chain resonances (not seen in the spectrum of the peptide alone) is indicated (*). (B) Chemical shift changes induced on the CGRRAGGSC resonances by binding to IL-11Rα. The 2D-1H-NMR TOCSY spectra of CGRRAGGSC (400 µM) either alone (black) or in the presence of 6 µM IL-11Rα (red) are shown. Single-headed and double-headed arrows indicate chemical shift changes and the appearance of new spin-systems, respectively. (C) Composition of amide region of 1D-1H-NMR and corresponding 2D-1H-NMR TOCSY spectra of the CGRRAGGSC peptide at 5°C (left), at 25°C (middle) and at 25°C in the presence of IL-11Rα (right). The circles with dotted lines and the arrow indicate arginine resonances.
Figure 3
Figure 3. Binding of wild-type or site-directed mutants of IL-11 to IL-11Rα.
(A) Purified recombinant proteins were analyzed by Coomassie staining. (B) Western blot analyses with polyclonal anti-IL-11 and anti-GST antibodies. (C) Recombinant GST fusion proteins (alanine scan mutants of residues 112–117 of IL-11, wild-type IL-11, GST alone, or rhIL-11) were coated in triplicate overnight and incubated with IL-11Rα. Binding was detected with anti-Fc antibody. Bars represent mean±standard error of the mean (SEM).
Figure 4
Figure 4. Biological effects of the IL-11-like peptide CGRRAGGSC on IL-11-responsive cells.
(A) Concentration-dependent proliferative response to CGRRAGGSC is shown on IL-11Rα-expressing human TF-1 leukemia cells in the absence or presence of IL-11 (left panel). No response is observed on non-IL-11Rα-expressing control cells (right panel). (B) Soluble IL-11Rα-mediated inhibition of the proliferative effect induced by 150 µM CGRRAGGSC peptide (and by IL-11). * t-test, P<0.005. Bars represent mean±standard error of the mean (SEM).
Figure 5
Figure 5. The IL-11-Like peptide CGRRAGGSC induces STAT3 activation upon binding to IL-11Rα in a concentration-dependent manner.
(A) Proliferation of human TF-1 leukemia cells induced by CGRRAGGSC is associated with STAT3 phosphorylation, as assessed with an anti-STAT3-P-Tyr705 antibody. (B) CGRRAGGSC peptide-induced activation of STAT3 is concentration dependent. No effect is observed with a control peptide. To avoid inter-experimental variation, the lysate was divided in two: one-half of the lysate was immunoblotted with an anti-STAT3-P-Tyr705 antibody whereas the other half served to determine the total amount of STAT3 (as a surrogate for protein loading) with a specific anti-STAT3 antibody. Note that the commercial HeLa cell extracts serving as controls display only the ∝-STAT3 band.
Figure 6
Figure 6. Residues identified within known human IL-11 binding sites.
Arrowheads indicate human IL-11 residues predicted (through site-directed mutagenesis) to be ligand-receptor binding sites; solid colors specify residues that are critical for binding –. Residues 112–117 corresponding to the IL-11-like motif , described in this work are highlighted in yellow. The basic scheme of human IL-11, as shown here, has been modified from reference .

Similar articles

Cited by

References

    1. Arap W, Kolonin MG, Trepel M, Lahdenranta J, Cardó-Vila M, et al. Steps toward mapping the human vasculature by phage display. Nat Med. 2002;8:121–127. - PubMed
    1. Zurita AJ, Troncoso P, Cardó-Vila M, Logothetis CJ, Pasqualini R, et al. Combinatorial screenings in patients: the interleukin-11 receptor alpha as a candidate target in the progression of human prostate cancer. Cancer Res. 2004;64:435–439. - PubMed
    1. Arap W, Pasqualini R, Ruoslahti E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science. 1998;279:377–380. - PubMed
    1. Ellerby HM, Arap W, Ellerby LM, Kain R, Andrusiak R, et al. Anti-cancer activity of targeted pro-apoptotic peptides. Nat Med. 1999;5:1032–1038. - PubMed
    1. Koivunen E, Arap W, Valtanen H, Rainisalo A, Medina OP, et al. Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol. 1999;17:768–774. - PubMed

Publication types