Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Dec 15;112(13):5219-27.
doi: 10.1182/blood-2008-06-161919. Epub 2008 Sep 16.

Cell functions impaired by frataxin deficiency are restored by drug-mediated iron relocation

Affiliations
Free article

Cell functions impaired by frataxin deficiency are restored by drug-mediated iron relocation

Or Kakhlon et al. Blood. .
Free article

Abstract

Various human disorders are associated with misdistribution of iron within or across cells. Friedreich ataxia (FRDA), a deficiency in the mitochondrial iron-chaperone frataxin, results in defective use of iron and its misdistribution between mitochondria and cytosol. We assessed the possibility of functionally correcting the cellular properties affected by frataxin deficiency with a siderophore capable of relocating iron and facilitating its metabolic use. Adding the chelator deferiprone at clinical concentrations to inducibly frataxin-deficient HEK-293 cells resulted in chelation of mitochondrial labile iron involved in oxidative stress and in reactivation of iron-depleted aconitase. These led to (1) restoration of impaired mitochondrial membrane and redox potentials, (2) increased adenosine triphosphate production and oxygen consumption, and (3) attenuation of mitochondrial DNA damage and reversal of hypersensitivity to staurosporine-induced apoptosis. Permeant chelators of higher affinity than deferiprone were not as efficient in restoring affected functions. Thus, although iron chelation might protect cells from iron toxicity, rendering the chelated iron bioavailable might underlie the capacity of deferiprone to restore cell functions affected by frataxin deficiency, as also observed in FRDA patients. The siderophore-like properties of deferiprone provide a rational basis for treating diseases of iron misdistribution, such as FRDA, anemia of chronic disease, and X-linked sideroblastic anemia with ataxia.

PubMed Disclaimer

Similar articles

Cited by

Publication types