Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Oct 30;120(1):112-7.
doi: 10.1016/j.jep.2008.07.039. Epub 2008 Aug 5.

Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture

Affiliations

Neuroprotective effect of Bacopa monnieri on beta-amyloid-induced cell death in primary cortical culture

Nanteetip Limpeanchob et al. J Ethnopharmacol. .

Abstract

Aim of the study: Bacopa monnieri (Brahmi) is extensively used in traditional Indian medicine as a nerve tonic and thought to improve memory. To examine the neuroprotective effects of Brahmi extract, we tested its protection against the beta-amyloid protein (25-35) and glutamate-induced neurotoxicity in primary cortical cultured neurons.

Materials and methods: Neuroprotective effects were determined by measuring neuronal cell viability following beta-amyloid and glutamate treatment with and without Brahmi extract. Mechanisms of neuroprotection were evaluated by monitoring cellular oxidative stress and acetylcholinesterase activity.

Results: Our result demonstrated that Brahmi extract protected neurons from beta-amyloid-induced cell death, but not glutamate-induced excitotoxicity. This neuroprotection was possibly due to its ability to suppress cellular acetylcholinesterase activity but not the inhibition of glutamate-mediated toxicity. In addition, culture medium containing Brahmi extract appeared to promote cell survival compared to neuronal cells growing in regular culture medium. Further study showed that Brahmi-treated neurons expressed lower level of reactive oxygen species suggesting that Brahmi restrained intracellular oxidative stress which in turn prolonged the lifespan of the culture neurons. Brahmi extract also exhibited both reducing and lipid peroxidation inhibitory activities.

Conclusions: From this study, the mode of action of neuroprotective effects of Brahmi appeared to be the results of its antioxidant to suppress neuronal oxidative stress and the acetylcholinesterase inhibitory activities. Therefore, treating patients with Brahmi extract may be an alternative direction for ameliorating neurodegenerative disorders associated with the overwhelming oxidative stress as well as Alzheimer's disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources