Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Sep;5(9):554-65.
doi: 10.1038/ncpcardio1301. Epub 2008 Jul 29.

The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases

Affiliations
Review

The cardiac sarcoplasmic/endoplasmic reticulum calcium ATPase: a potent target for cardiovascular diseases

Yoshiaki Kawase et al. Nat Clin Pract Cardiovasc Med. 2008 Sep.

Abstract

The cardiac isoform of the sarcoplasmic/endoplasmic reticulum calcium ATPase (SERCA2a) is a calcium ion (Ca(2+)) pump powered by ATP hydrolysis. SERCA2a transfers Ca(2+) from the cytosol of the cardiomyocyte to the lumen of the sarcoplasmic reticulum during muscle relaxation. As such, this transporter has a key role in cardiomyocyte Ca(2+) regulation. In both experimental models and human heart failure, SERCA2a expression is significantly decreased, which leads to abnormal Ca(2+) handling and a deficient contractile state. Following a long line of investigations in isolated cardiac myocytes and small and large animal models, a clinical trial is underway that is restoring SERCA2a expression in patients with heart failure by use of adeno-associated virus type 1. Beyond its role in contractile abnormalities in heart failure, SERCA2a overexpression has beneficial effects in a host of other cardiovascular diseases. Here we describe the mechanism of Ca(2+) regulation by SERCA2a, examine the beneficial effects as well as the failures, risks and complexities associated with SERCA2a overexpression, and discuss the potential of SERCA2a as a target for the treatment of cardiovascular disease.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms