Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008:14:253-74.
doi: 10.1016/S1387-2656(08)00010-0.

G protein-independent cell-based assays for drug discovery on seven-transmembrane receptors

Affiliations
Review

G protein-independent cell-based assays for drug discovery on seven-transmembrane receptors

Folkert Verkaar et al. Biotechnol Annu Rev. 2008.

Abstract

Conventional cell-based assays for seven-transmembrane receptors, also known as G protein-coupled receptors, rely on the coupling of the ligand-bound receptor to heterotrimeric G proteins. New assay methods have become available that are not based on G protein activation, but that apply the molecular mechanism underlying the attenuation of G protein signaling mediated by beta-arrestin. beta-arrestin is a cytoplasmic protein that targets receptors to clathrin-coated endocytotic vesicles for degradation or recycling. This process has been visualized and quantified in high-content imaging assays using receptor- or beta-arrestin-chimeras with green fluorescent protein. Other assay methods use bioluminescence resonance energy transfer, enzyme fragment complementation, or a protease-activated transcriptional reporter gene, to measure receptor-beta-arrestin proximity. beta-arrestin recruitment assays have been applied successfully for receptors coupling to Galpha(q), Galpha(s) and Galpha(i) proteins, thus providing a generic assay platform for drug discovery on G protein-coupled receptors. The best understood signal transduction pathway elicited by the seven-transmembrane Frizzled receptors does not involve G proteins. The activation of Frizzleds by their cognate ligands of the Wnt family recruits the phosphoprotein dishevelled. Dishevelled regulates a protein complex involved in the destruction of beta-catenin. Activation of Frizzled blocks degradation of beta-catenin, which translocates to the nucleus to activate transcription of Wnt-responsive genes. The cytoplasm-to-nuclear translocation of beta-catenin forms the basis of several high-content assays to measure Wnt/Frizzled signal transduction. Interestingly, Frizzled receptors have recently been shown to internalize and to recruit beta-arrestin. This suggests that beta-arrestin recruitment assays may be applied for drug discovery on seven-transmembrane receptors beyond G protein-coupled receptors.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources