Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine
- PMID: 18447366
- DOI: 10.1021/ar7002804
Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine
Abstract
Noble metal nanostructures attract much interest because of their unique properties, including large optical field enhancements resulting in the strong scattering and absorption of light. The enhancement in the optical and photothermal properties of noble metal nanoparticles arises from resonant oscillation of their free electrons in the presence of light, also known as localized surface plasmon resonance (LSPR). The plasmon resonance can either radiate light (Mie scattering), a process that finds great utility in optical and imaging fields, or be rapidly converted to heat (absorption); the latter mechanism of dissipation has opened up applications in several new areas. The ability to integrate metal nanoparticles into biological systems has had greatest impact in biology and biomedicine. In this Account, we discuss the plasmonic properties of gold and silver nanostructures and present examples of how they are being utilized for biodiagnostics, biophysical studies, and medical therapy. For instance, taking advantage of the strong LSPR scattering of gold nanoparticles conjugated with specific targeting molecules allows the molecule-specific imaging and diagnosis of diseases such as cancer. We emphasize in particular how the unique tunability of the plasmon resonance properties of metal nanoparticles through variation of their size, shape, composition, and medium allows chemists to design nanostructures geared for specific bio-applications. We discuss some interesting nanostructure geometries, including nanorods, nanoshells, and nanoparticle pairs, that exhibit dramatically enhanced and tunable plasmon resonances, making them highly suitable for bio-applications. Tuning the nanostructure shape (e.g., nanoprisms, nanorods, or nanoshells) is another means of enhancing the sensitivity of the LSPR to the nanoparticle environment and, thereby, designing effective biosensing agents. Metal nanoparticle pairs or assemblies display distance-dependent plasmon resonances as a result of field coupling. A universal scaling model, relating the plasmon resonance frequency to the interparticle distance in terms of the particle size, becomes potentially useful for measuring nanoscale distances (and their changes) in biological systems. The strong plasmon absorption and photothermal conversion of gold nanoparticles has been exploited in cancer therapy through the selective localized photothermal heating of cancer cells. For nanorods or nanoshells, the LSPR can be tuned to the near-infrared region, making it possible to perform in vivo imaging and therapy. The examples of the applications of noble metal nanostructures provided herein can be readily generalized to other areas of biology and medicine because plasmonic nanomaterials exhibit great range, versatility, and systematic tunability of their optical attributes.
Similar articles
-
Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition.J Phys Chem B. 2006 Oct 5;110(39):19220-5. doi: 10.1021/jp062536y. J Phys Chem B. 2006. PMID: 17004772
-
Nanoshell-enabled photothermal cancer therapy: impending clinical impact.Acc Chem Res. 2008 Dec;41(12):1842-51. doi: 10.1021/ar800150g. Acc Chem Res. 2008. PMID: 19053240
-
Biological applications of localised surface plasmonic phenomenae.IEE Proc Nanobiotechnol. 2005 Feb;152(1):13-32. doi: 10.1049/ip-nbt:20045012. IEE Proc Nanobiotechnol. 2005. PMID: 16441155 Review.
-
Metal nanoshells.Ann Biomed Eng. 2006 Jan;34(1):15-22. doi: 10.1007/s10439-005-9001-8. Epub 2006 Mar 10. Ann Biomed Eng. 2006. PMID: 16528617 Review.
-
Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.J Phys Chem B. 2006 Sep 7;110(35):17444-51. doi: 10.1021/jp0636930. J Phys Chem B. 2006. PMID: 16942083
Cited by
-
Characterizing the lateral friction of nanoparticles on on-chip integrated black lipid membranes.Small. 2013 Mar 25;9(6):876-84. doi: 10.1002/smll.201202005. Epub 2012 Nov 23. Small. 2013. PMID: 23180691 Free PMC article.
-
Diagnostic and Therapeutic Nanomedicine.Adv Exp Med Biol. 2021;1310:401-447. doi: 10.1007/978-981-33-6064-8_15. Adv Exp Med Biol. 2021. PMID: 33834444
-
Metal plasmon-coupled fluorescence imaging and label free coenzyme detection in cells.Biochem Biophys Res Commun. 2012 Aug 31;425(3):696-700. doi: 10.1016/j.bbrc.2012.06.058. Epub 2012 Jun 17. Biochem Biophys Res Commun. 2012. PMID: 22713456 Free PMC article.
-
Dual-plasmonic Au@Cu7S4 yolk@shell nanocrystals for photocatalytic hydrogen production across visible to near infrared spectral region.Nat Commun. 2024 Jan 9;15(1):413. doi: 10.1038/s41467-023-44664-3. Nat Commun. 2024. PMID: 38195553 Free PMC article.
-
Carbon Dots in Photodynamic/Photothermal Antimicrobial Therapy.Nanomaterials (Basel). 2024 Jul 25;14(15):1250. doi: 10.3390/nano14151250. Nanomaterials (Basel). 2024. PMID: 39120355 Free PMC article. Review.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical