Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008:437:191-209.
doi: 10.1016/S0076-6879(07)37011-0.

Reactions of nitric oxide and oxygen with the regulator of fumarate and nitrate reduction, a global transcriptional regulator, during anaerobic growth of Escherichia coli

Affiliations
Review

Reactions of nitric oxide and oxygen with the regulator of fumarate and nitrate reduction, a global transcriptional regulator, during anaerobic growth of Escherichia coli

Jason C Crack et al. Methods Enzymol. 2008.

Abstract

The Escherichia coli fumarate and nitrate reductase (FNR) regulator protein is an important transcriptional regulator that controls the expression of a large regulon of more than 100 genes in response to changes in oxygen availability. FNR is active when it acquires a [4Fe-4S](2+) cluster under anaerobic conditions. The presence of the [4Fe-4S](2+) cluster promotes protein dimerization and site-specific DNA binding, facilitating activation or repression of target promoters. Oxygen is sensed by the controlled disassembly of the [4Fe-4S](2+) cluster, ultimately resulting in inactive, monomeric, apo-FNR. The FNR [4Fe-4S](2+) cluster is also sensitive to nitric oxide, such that under anaerobic conditions the protein is inactivated by nitrosylation of the iron-sulfur cluster, yielding a mixture of monomeric and dimeric dinitrosyl-iron cysteine species. This chapter describes some of the methods used to produce active [4Fe-4S] FNR protein and investigates the reaction of the [4Fe-4S](2+) cluster with nitric oxide and oxygen in vitro.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources