Increased osteoclastic activity in acute Charcot's osteoarthropathy: the role of receptor activator of nuclear factor-kappaB ligand
- PMID: 18389210
- PMCID: PMC2362134
- DOI: 10.1007/s00125-008-0992-1
Increased osteoclastic activity in acute Charcot's osteoarthropathy: the role of receptor activator of nuclear factor-kappaB ligand
Abstract
Aims/hypothesis: Our aims were to compare osteoclastic activity between patients with acute Charcot's osteoarthropathy and diabetic and healthy controls, and to determine the effect of the receptor activator of nuclear factor-kappaB ligand (RANKL) and its decoy receptor osteoprotegerin (OPG).
Methods: Peripheral blood monocytes isolated from nine diabetic Charcot patients, eight diabetic control and eight healthy control participants were cultured in the presence of macrophage-colony stimulating factor (M-CSF) alone, M-CSF and RANKL, and also M-CSF and RANKL with excess concentrations of OPG. Osteoclast formation was assessed by expression of tartrate-resistant acid phosphatase on glass coverslips and resorption on dentine slices.
Results: In cultures with M-CSF, there was a significant increase in osteoclast formation in Charcot patients compared with healthy and diabetic control participants (p=0.008). A significant increase in bone resorption was also seen in the former, compared with healthy and diabetic control participants (p<0.0001). The addition of RANKL to the cultures with M-CSF led to marked increase in osteoclastic resorption in Charcot (from 0.264+/-0.06% to 41.6+/-8.1%, p<0.0001) and diabetic control (0.000+/-0.00% to 14.2+/-16.5%, p<0.0001) patients, and also in healthy control participants (0.004+/-0.01% to 10.5+/-1.9%, p<0.0001). Although the addition of OPG to cultures with M-CSF and RANKL led to a marked reduction of resorption in Charcot patients (41.6+/-8.1% to 5.9+/-2.4%, p=0.001), this suppression was not as complete as in diabetic control patients (14.2+/-16.5% to 0.45+/-0.31%, p=0.001) and in healthy control participants (from 10.5+/-1.9% to 0.00+/-0.00%, p<0.0001).
Conclusions/interpretation: These results indicate that RANKL-mediated osteoclastic resorption occurs in acute Charcot's osteoarthropathy. However, the incomplete inhibition of RANKL after addition of OPG also suggests the existence of a RANKL-independent pathway.
Figures
Similar articles
-
Inhibition of TNF-α Reverses the Pathological Resorption Pit Profile of Osteoclasts from Patients with Acute Charcot Osteoarthropathy.J Diabetes Res. 2015;2015:917945. doi: 10.1155/2015/917945. Epub 2015 Jun 2. J Diabetes Res. 2015. PMID: 26137498 Free PMC article.
-
Osteoblasts/stromal cells stimulate osteoclast activation through expression of osteoclast differentiation factor/RANKL but not macrophage colony-stimulating factor: receptor activator of NF-kappa B ligand.Bone. 1999 Nov;25(5):517-23. doi: 10.1016/s8756-3282(99)00210-0. Bone. 1999. PMID: 10574571
-
Combination of beta-cryptoxanthin and zinc has potent effects on apoptotic cell death and suppression of bone resorption-related gene expression in osteoclastic cells.Int J Mol Med. 2008 Aug;22(2):221-8. Int J Mol Med. 2008. PMID: 18636177
-
Functions of RANKL/RANK/OPG in bone modeling and remodeling.Arch Biochem Biophys. 2008 May 15;473(2):139-46. doi: 10.1016/j.abb.2008.03.018. Epub 2008 Mar 25. Arch Biochem Biophys. 2008. PMID: 18395508 Free PMC article. Review.
-
Osteoclast differentiation by RANKL and OPG signaling pathways.J Bone Miner Metab. 2021 Jan;39(1):19-26. doi: 10.1007/s00774-020-01162-6. Epub 2020 Oct 20. J Bone Miner Metab. 2021. PMID: 33079279 Review.
Cited by
-
Etiology, pathophysiology and classifications of the diabetic Charcot foot.Diabet Foot Ankle. 2013 May 21;4. doi: 10.3402/dfa.v4i0.20872. Print 2013. Diabet Foot Ankle. 2013. PMID: 23705058 Free PMC article.
-
Pathogenesis and potential relative risk factors of diabetic neuropathic osteoarthropathy.J Orthop Surg Res. 2017 Oct 2;12(1):142. doi: 10.1186/s13018-017-0634-8. J Orthop Surg Res. 2017. PMID: 28969714 Free PMC article. Review.
-
Association between osteoprotegerin G1181C and T245G polymorphisms and diabetic charcot neuroarthropathy: a case-control study.Diabetes Care. 2009 Sep;32(9):1694-7. doi: 10.2337/dc09-0243. Epub 2009 Jun 5. Diabetes Care. 2009. PMID: 19502537 Free PMC article.
-
Treatment of acute Charcot foot with bisphosphonates: a systematic review of the literature.Diabetologia. 2012 May;55(5):1258-64. doi: 10.1007/s00125-012-2507-3. Epub 2012 Feb 25. Diabetologia. 2012. PMID: 22361982 Review.
-
An overview of the Charcot foot pathophysiology.Diabet Foot Ankle. 2013 Aug 2;4. doi: 10.3402/dfa.v4i0.21117. Print 2013. Diabet Foot Ankle. 2013. PMID: 23919113 Free PMC article.
References
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1002/(SICI)1096-9136(199707)14:7<527::AID-DIA404>3.0.CO;2-Q', 'is_inner': False, 'url': 'https://doi.org/10.1002/(sici)1096-9136(199707)14:7<527::aid-dia404>3.0.co;2-q'}, {'type': 'PubMed', 'value': '9223389', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/9223389/'}]}
- Gough A, Abraha H, Li F et al (1997) Measurement of markers of osteoclast and osteoblast activity in patients with acute and chronic diabetic Charcot neuroarthropathy. Diabet Med 14:527–531 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1126/science.289.5484.1504', 'is_inner': False, 'url': 'https://doi.org/10.1126/science.289.5484.1504'}, {'type': 'PubMed', 'value': '10968780', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/10968780/'}]}
- Teitelbaum SL (2000) Bone resoption by osteoclasts. Science 289:1504–1508 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1073/pnas.95.7.3597', 'is_inner': False, 'url': 'https://doi.org/10.1073/pnas.95.7.3597'}, {'type': 'PMC', 'value': 'PMC19881', 'is_inner': False, 'url': 'https://pmc.ncbi.nlm.nih.gov/articles/PMC19881/'}, {'type': 'PubMed', 'value': '9520411', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/9520411/'}]}
- Yasuda H, Shima N, Nakagawa N et al (1998) Osteoclast differentiation factor is a ligand for osteoprotegerin/osteoclastogenesis-inhibitory factor and is identical to TRANCE/RANKL. Proc Natl Acad Sci U S A 95:3597–3602 - PMC - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1001/jama.292.4.490', 'is_inner': False, 'url': 'https://doi.org/10.1001/jama.292.4.490'}, {'type': 'PubMed', 'value': '15280347', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15280347/'}]}
- Hofbauer LC, Schoppet M (2004) Clinical implications of the osteoprotegerin/ RANKL /RANK system for bone and vascular diseases. JAMA 292:490–495 - PubMed
-
- {'text': '', 'ref_index': 1, 'ids': [{'type': 'DOI', 'value': '10.1007/s00125-004-1477-5', 'is_inner': False, 'url': 'https://doi.org/10.1007/s00125-004-1477-5'}, {'type': 'PubMed', 'value': '15322748', 'is_inner': True, 'url': 'https://pubmed.ncbi.nlm.nih.gov/15322748/'}]}
- Jeffcoate W (2004) Vascular calcification and osteolysis in diabetic neuropathy—is RANK-L the missing link? Diabetelogia 47:1488–1492 - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical
Research Materials