Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Apr 22;153(1):308-17.
doi: 10.1016/j.neuroscience.2008.01.076. Epub 2008 Feb 16.

Stimulation of the inferior olivary complex alters the distribution of the type 1 corticotropin releasing factor receptor in the adult rat cerebellar cortex

Affiliations

Stimulation of the inferior olivary complex alters the distribution of the type 1 corticotropin releasing factor receptor in the adult rat cerebellar cortex

J-B Tian et al. Neuroscience. .

Abstract

In a previous study, it was shown that populations of climbing fibers, derived from the inferior olivary complex (IOC) contain the peptide corticotropin releasing factor (CRF) and that the expression of this peptide in climbing fibers could be modulated by the level of activity in olivary afferents. The intent of this study was to determine if there was comparable plasticity in the distribution of the type 1 CRF receptor (CRF-R1) in the cerebellum of the rat. Our results indicate that CRF-R1 was localized primarily to Purkinje cell somata and their primary dendrites and granule cells. In addition, scattered immunolabeling was present over the somata of Golgi cells, basket cells and stellate cells, as well as Bergmann glial cells and their processes. IOC stimulation for 30 min at 1 Hz increased CRF-R1 expression in molecular layer interneurons and processes of Bergmann glial cells. Little to no effect on CRF receptor distribution was observed in Purkinje cells, granule cells, or Golgi cells. IOC stimulation at 5 Hz however, increased CRF-R1 expression in the processes of Bergmann glial cells while decreasing its expression in basket, stellate and, to some extent, in Purkinje cells. The present results suggest that there is activity-dependent plasticity in CRF-R1 expression that must be considered in defining the mechanism by which the CRF family of peptides modulates activity in cerebellar circuits. The present results also suggest that the primary targets of CRF released from climbing fibers are Bergmann glial cells and interneurons in the molecular layer. Further, interneurons responded with a decrease in receptor expression following more intense levels of stimulation suggesting the possibility of internalization of the receptor. In contrast, Bergmann glial cells showed an increased expression in receptor expression. These data suggest that CRF released from climbing fibers may modulate the physiological properties of basket and stellate cells as well as having a heretofore unidentified and potentially unique effect on Bergmann glia.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

Substances

LinkOut - more resources