Recent advances in optical tweezers
- PMID: 18307407
- DOI: 10.1146/annurev.biochem.77.043007.090225
Recent advances in optical tweezers
Abstract
It has been over 20 years since the pioneering work of Arthur Ashkin, and in the intervening years, the field of optical tweezers has grown tremendously. Optical tweezers are now being used in the investigation of an increasing number of biochemical and biophysical processes, from the basic mechanical properties of biological polymers to the multitude of molecular machines that drive the internal dynamics of the cell. Innovation, however, continues in all areas of instrumentation and technique, with much of this work focusing on the refinement of established methods and on the integration of this tool with other forms of single-molecule manipulation or detection. Although technical in nature, these developments have important implications for the expanded use of optical tweezers in biochemical research and thus should be of general interest. In this review, we address these recent advances and speculate on possible future developments.
Similar articles
-
High-resolution dual-trap optical tweezers with differential detection: an introduction.Cold Spring Harb Protoc. 2009 Oct;2009(10):pdb.top60. doi: 10.1101/pdb.top60. Cold Spring Harb Protoc. 2009. PMID: 20147062
-
Exploring mechanochemical processes in the cell with optical tweezers.Biol Cell. 2006 Dec;98(12):679-95. doi: 10.1042/BC20060036. Biol Cell. 2006. PMID: 17105446 Review.
-
Single molecule studies of DNA binding proteins using optical tweezers.Analyst. 2006 Aug;131(8):868-74. doi: 10.1039/b600157m. Epub 2006 Jun 30. Analyst. 2006. PMID: 17028717 Review.
-
High-resolution dual-trap optical tweezers with differential detection: managing environmental noise.Cold Spring Harb Protoc. 2009 Oct;2009(10):pdb.ip72. doi: 10.1101/pdb.ip72. Cold Spring Harb Protoc. 2009. PMID: 20147037
-
Single-molecule force spectroscopy using the NanoTracker optical tweezers platform: from design to application.Curr Pharm Biotechnol. 2009 Aug;10(5):467-73. doi: 10.2174/138920109788922164. Curr Pharm Biotechnol. 2009. PMID: 19689314
Cited by
-
Three-dimensional optical trapping of a plasmonic nanoparticle using low numerical aperture optical tweezers.Sci Rep. 2015 Jan 29;5:8106. doi: 10.1038/srep08106. Sci Rep. 2015. PMID: 25630432 Free PMC article.
-
Parallel force assay for protein-protein interactions.PLoS One. 2014 Dec 29;9(12):e115049. doi: 10.1371/journal.pone.0115049. eCollection 2014. PLoS One. 2014. PMID: 25546146 Free PMC article.
-
Probing DNA Stiffness through Optical Fluctuation Analysis of Plasmon Rulers.Nano Lett. 2015 Aug 12;15(8):5349-57. doi: 10.1021/acs.nanolett.5b01725. Epub 2015 Jul 6. Nano Lett. 2015. PMID: 26121062 Free PMC article.
-
Single-molecule folding mechanisms of the apo- and Mg(2+)-bound states of human neuronal calcium sensor-1.Biophys J. 2015 Jul 7;109(1):113-23. doi: 10.1016/j.bpj.2015.05.028. Biophys J. 2015. PMID: 26153708 Free PMC article.
-
Enhancing the strength of an optical trap by truncation.PLoS One. 2013 Apr 8;8(4):e61310. doi: 10.1371/journal.pone.0061310. Print 2013. PLoS One. 2013. PMID: 23593458 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources