Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2008 Feb 28;177(1):38-47.
doi: 10.1016/j.toxlet.2007.12.007. Epub 2007 Dec 27.

Time dependencies in perfluorooctylacids disposition in rat and monkeys: a kinetic analysis

Affiliations
Comparative Study

Time dependencies in perfluorooctylacids disposition in rat and monkeys: a kinetic analysis

Yu-Mei Tan et al. Toxicol Lett. .

Abstract

Perfluorooctanoate (PFOA) and perfluorooctanesulfonate (PFOS) are surfactants that have been used for various industrial and consumer applications. The widespread exposure and persistence of PFOA and PFOS in humans have caused these chemicals to be the subject of intense kinetic and toxicity studies. To identify the biological determinants of the species different in elimination observed in kinetic studies, we incorporated time-dependent descriptions for free fraction in plasma and for volume of distribution into an earlier pharmacokinetic model to simulate the time course behaviors of PFOA and PFOS in monkeys and rats. The structurally similar model for monkeys and rats also allows for examination of the complex kinetics observed in animal studies. A higher estimated liver:blood partition coefficient in the rat and additional binding in rat liver suggest that PFOS retention in liver occurs in rats but not in monkeys. Higher liver:blood partition coefficient and renal filtration suggest that PFOS is retained longer in tissues compared to PFOA. A much lower renal resorption may explain the fast elimination of PFOA from plasma observed in female compared to male rats. Understanding these cross-species, cross-compound, and cross-gender difference is an important step in the future development of a human model for these compounds.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources