Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2008 Jul;56(5):305-9.
doi: 10.1016/j.patbio.2007.09.008. Epub 2008 Jan 30.

Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding

Affiliations
Review

Role of gut microflora in the development of obesity and insulin resistance following high-fat diet feeding

P D Cani et al. Pathol Biol (Paris). 2008 Jul.

Abstract

A recent growing number of evidences shows that the increased prevalence of obesity and type 2 diabetes cannot be solely attributed to changes in the human genome, nutritional habits, or reduction of physical activity in our daily lives. Gut microflora may play an even more important role in maintaining human health. Recent data suggests that gut microbiota affects host nutritional metabolism with consequences on energy storage. Several mechanisms are proposed, linking events occurring in the colon and the regulation of energy metabolism. The present review discusses new findings that may explain how gut microbiota can be involved in the development of obesity and insulin resistance. Recently, studies have highlighted some key aspects of the mammalian host-gut microbial relationship. Gut microbiota could now be considered as a "microbial organ" localized within the host. Therefore, specific strategies aiming to regulate gut microbiota could be useful means to reduce the impact of high-fat feeding on the occurrence of metabolic diseases.

PubMed Disclaimer

Similar articles

Cited by

MeSH terms

LinkOut - more resources