Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Dec 10;25(35):5562-9.
doi: 10.1200/JCO.2007.12.0352.

Three-gene prognostic classifier for early-stage non small-cell lung cancer

Affiliations

Three-gene prognostic classifier for early-stage non small-cell lung cancer

Suzanne K Lau et al. J Clin Oncol. .

Abstract

Purpose: Several microarray studies have reported gene expression signatures that classify non-small-cell lung carcinoma (NSCLC) patients into different prognostic groups. However, the prognostic gene lists reported to date overlap poorly across studies, and few have been validated independently using more quantitative assay methods.

Patients and methods: The expression of 158 putative prognostic genes identified in previous microarray studies was analyzed by reverse transcription quantitative polymerase chain reaction in the tumors of 147 NSCLC patients. Concordance indices and risk scores were used to identify a stage-independent set of genes that could classify patients with significantly different prognoses.

Results: We have identified a three-gene classifier (STX1A, HIF1A, and CCR7) for overall survival (hazard ratio = 3.8; 95% CI, 1.7 to 8.2; P < .001). The classifier was also able to stratify stage I and II patients and further improved the predictive ability of clinical factors such as histology and tumor stage. The predictive value of this three-gene classifier was validated in two large independent microarray data sets from Harvard and Duke Universities.

Conclusion: We have identified a new three-gene classifier that is independent of and improves on stage to stratify early-stage NSCLC patients with significantly different prognoses. This classifier may be tested further for its potential value to improve the selection of resected NSCLC patients in adjuvant therapy.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms