Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Nov;26(11):2389-96.
doi: 10.1897/07-017R.1.

Whole-sediment toxicity identification evaluation tools for pyrethroid insecticides: I. Piperonyl butoxide addition

Affiliations

Whole-sediment toxicity identification evaluation tools for pyrethroid insecticides: I. Piperonyl butoxide addition

Erin L Amweg et al. Environ Toxicol Chem. 2007 Nov.

Abstract

Piperonyl butoxide (PBO) is a synergist used in some pyrethroid and pyrethrin pesticide products and has been used in toxicity identification evaluations (TIEs) of water samples to indicate organophosphate or pyrethroid-related toxicity. Methods were developed and validated for use of PBO as a TIE tool in whole-sediment testing to help establish if pyrethroids are the cause of toxicity observed in field-collected sediments. Pyrethroid toxicity was increased slightly more than twofold in 10-d sediment toxicity tests with Hyalella azteca exposed to 25 microg/L of PBO in the overlying water. This concentration was found to be effective for sediment TIE use, but it is well below that used in previous water and pore-water TIEs with PBO. The effect of PBO on the toxicity of several nonpyrethroids also was tested. Toxicity of the organophosphate chlorpyrifos was reduced by PBO, and the compound had no effect on toxicity of cadmium, DDT, or fluoranthene. Mixtures of the pyrethroid bifenthrin and chlorpyrifos were tested to determine the ability of PBO addition to identify pyrethroid toxicity when organophosphates were present in a sample. The PBO-induced increase in pyrethroid toxicity was not seen when chlorpyrifos was present at or above equitoxic concentrations with the pyrethroid. In the vast majority of field samples, however, the presence of chlorpyrifos does not interfere with use of PBO to identify pyrethroid toxicity. Eleven field sediments or soils containing pyrethroids and/or chlorpyrifos were used to validate the method. Characterization of the causative agent as determined by PBO addition was consistent with confirmation by chemical analysis and comparison to known toxicity thresholds in 10 of the 11 sediments.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources